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To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied
single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients,
profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the
same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial
context, and a drug-resistance program. In particular, all tumors harbored malignant cells
from two distinct transcriptional cell states, such that tumors characterized by high levels of
the MITF transcription factor also contained cells with low MITF and elevated levels of the
AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns,
including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion
programs, their connection to T cell activation and clonal expansion, and their variability
across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-
cell genomics offers insights with implications for both targeted and immune therapies.

T
umors are complex ecosystems defined by
spatiotemporal interactions between het-
erogeneous cell types, including malignant,
immune, and stromal cells (1). Each tumor’s
cellular composition, as well as the interplay

between these components, may exert critical roles
in cancer development (2). However, the specific
components, their salient biological functions, and
the means by which they collectively define tumor
behavior remain incompletely characterized.
Tumor cellular diversity poses both challenges

and opportunities for cancer therapy. This is ex-
emplified by the varied clinical efficacy achieved
in malignant melanoma with targeted therapies
and immunotherapies. Immune checkpoint in-
hibitors can produce clinical responses in many
patients with metastatic melanomas (3–7); how-

ever, the genomic and molecular determinants
of response to these agents remain incompletely
understood. Although tumor neoantigens and
PD-L1 expression clearly correlate with this re-
sponse (8–10), it is likely that other factors from
subsets of malignant cells, the microenviron-
ment, and tumor-infiltrating lymphocytes (TILs)
also play essential roles (11).
Melanomas that harbor the BRAFV600E (V600E:

Val600→Glu600) mutation are commonly treated
with inhibitors of rapidly accelerated fibrosar-
coma kinase (RAF) and mitogen-activated protein
kinase (MEK), before or after immune checkpoint
inhibition. Although this regimen improves sur-
vival, virtually all tumors eventually develop re-
sistance to these drugs (12, 13). Unfortunately,
no targeted therapy currently exists for patients

whose tumors lack BRAF mutations—including
NRAS mutant tumors, those with inactivating
NF1 mutations, or rarer events (such as RAF fu-
sions). Collectively, these factors highlight the
need for a deeper understanding of melanoma
composition and its effect on the clinical course.
The next wave of therapeutic advances in can-

cer will probably be accelerated by technologies
that assess the malignant, microenvironmental,
and immunologic states most likely to inform
treatment response and resistance. Ideally, we
would be able to assess salient cellular hetero-
geneity by quantifying variation in oncogenic
signaling pathways; drug-resistant tumor cell sub-
sets; and the spectrum of immune, stromal, and
other cell states that may inform immunother-
apy response. Toward this end, single-cell ge-
nomic approaches enable detailed evaluation
of genetic and transcriptional features present
in hundreds to thousands of individual cells
per tumor (14–16). In principle, this approach may
allow us to identify all major cellular compo-
nents simultaneously, determine their individual
genomic and molecular states (15), and ascertain
which of these features may predict or explain
clinical responses to anticancer agents. To explore
this question, we used single-cell RNA sequenc-
ing (RNA-seq) to examine heterogeneities in ma-
lignant and nonmalignant cell types and states
and to infer their possible drivers and interre-
lationships in the complex tumor cellular ecosystem.

Profiles of individual cells from
patient-derived melanoma tumors

We measured single-cell RNA-seq profiles from
4645 malignant, immune, and stromal cells iso-
lated from 19 freshly procured human melanoma
tumors that span a range of clinical and thera-
peutic backgrounds (table S1). These included
10 metastases to lymphoid tissues (9 to lymph
nodes and 1 to the spleen), 8 to distant sites (5 to
subcutaneous or intramuscular tissue and 3 to
the gastrointestinal tract), and one primary acral
melanoma. Genotypic information was available
for 17 of the 19 tumors, of which 4 had activating
mutations in BRAF and 5 in NRAS oncogenes;
eight patients had BRAF/NRAS wild-type mela-
nomas (table S1).
To isolate viable single cells that are suitable

for high-quality single-cell RNA-seq, we developed
and implemented a rapid translational workflow
(Fig. 1A) (15). We processed tumor tissues imme-
diately after surgical procurement and generated
single-cell suspensions within ~45 min, using an
experimental protocol optimized to reduce arti-
factual transcriptional changes introduced by dis-
aggregation, temperature, or time (17). Once in
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suspension, we recovered individual viable immune
(CD45+) and nonimmune (CD45–) cells (including
malignant and stromal cells) by flow cytometry
(fluorescence-activated cell sorting). Next, we pre-
pared cDNA from the individual cells, followed
by library construction and massively parallel se-
quencing. The average number of mapped reads
per cell was ~150,000 (17), with a median library
complexity of 4659 genes for malignant cells
and 3438 genes for immune cells, comparable to
previous studies of only malignant cells from
fresh glioblastoma tumors (15).

Single-cell transcriptome profiles
distinguish cell states in malignant
and nonmalignant cells

We used a multistep approach to distinguish the
different cell types within melanoma tumors

on the basis of both genetic and transcriptional
states (Fig. 1, B to D). First, we inferred large-
scale copy number variations (CNVs) from
expression profiles by averaging expression over
stretches of 100 genes on their respective chro-
mosomes (15) (Fig. 1B). For each tumor, this
approach revealed a common pattern of aneu-
ploidy, which we validated in two tumors by bulk
whole-exome sequencing (WES) (Fig. 1B and fig.
S1A). Cells in which aneuploidy was inferred
were classified as malignant cells (Fig. 1B and
fig. S1).
Second, we grouped the cells according to

their expression profiles (Fig. 1, C and D, and
fig. S2). To do this, we used nonlinear dimen-
sionality reduction [t-distributed stochastic neigh-
bor embedding (t-SNE)] (18), followed by density
clustering (19). Generally, cells designated as

malignant by CNV analysis formed a separate
cluster for each tumor (Fig. 1C), suggesting a
high degree of intertumor heterogeneity. In
contrast, the nonmalignant cells clustered by
cell type (Fig. 1D and fig. S2), independent of
their tumor of origin and metastatic site (fig.
S3). Clusters of nonmalignant cells were anno-
tated as T cells, B cells, macrophages, endothelial
cells, cancer-associated fibroblasts (CAFs), and
natural killer cells on the basis of their preferen-
tially or distinctively expressed marker genes (Fig.
1D, fig. S2, and tables S2 and S3).

Analysis of malignant cells reveals
heterogeneity in cell cycle and
spatial organization

We next used unbiased analyses of the individual
malignant cells to identify biologically relevant
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Fig. 1. Dissection of melanoma with single-cell RNA-seq. (A) Overview of
workflow.WES, whole-exome sequencing; RBC, red blood cell; FACS, fluorescence-
activated cell sorting. (B) Chromosomal landscape of inferred large-scale
CNVs allows us to distinguish malignant from nonmalignant cells. The Mel80
tumor is shown with individual cells (y axis) and chromosomal regions (x axis).
Amplifications (red) or deletions (blue) were inferred by averaging expression over
100-gene stretches on the respective chromosomes. Inferred CNVs are concor-
dant with calls from WES (bottom). (C and D) Single-cell expression profiles allow

us to distinguish malignant and nonmalignant cell types. Shown are t-SNE plots of
malignant [(C), shown are the six tumors, each with >50 malignant cells] and
nonmalignant (D) cells [as called from inferred CNVs as in (B)] from 11 tumors
with >100 cells per tumor (see color code below the panels). Clusters of non-
malignant cells [called by DBScan (17, 19)] are marked by dashed ellipses and
were annotated as Tcells, B cells, macrophages, CAFs, and endothelial (Endo.)
cells from preferentially expressed genes (fig. S2 and tables S2 and S3). NK,
natural killer cells.
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melanoma cell states. After controlling for inter-
tumor differences (17), we examined the six top
components from a principal component analysis
(PCA) (table S4). The first component correlated
highly with the number of genes detected per cell
and probably reflects technical aspects, whereas
the other five significant principal components
highlighted biological variability.
The second component (PC2) was associated

with the expression of cell cycle genes (Gene On-

tology project: “cell cycle” P < 10−16; hyper-
geometric test). To characterize cycling cells
more precisely, we used gene signatures that
have previously been shown to denote G1/S or
G2/M phases in both synchronization (20) and
single-cell (16) experiments in cell lines. Cell
cycle phase–specific signatures were highly
expressed in a subset of malignant cells, dis-
tinguishing cycling cells from noncycling cells
(Fig. 2A and fig. S4A). These signatures revealed

variability in the fraction of cycling cells across
tumors (13.5% on average, ±13 SD) (fig. S4B),
allowing us to designate both low-cycling (1 to
3%, e.g., Mel79) and high-cycling tumors (20 to
30%, e.g., Mel78), consistent with Ki67+ staining
results (Fig. 2B and fig. S4C).
A core set of cell cycle genes was induced (fig.

S4D, red dots; and table S5) in both low-cycling
and high-cycling tumors, with one notable ex-
ception: cyclin D3 (CCND3), which was induced
in cycling cells only in high-cycling tumors (fig.
S4D). In contrast, KDM5B (JARID1B) showed
the strongest association with noncycling cells
(Fig. 2A, green dots), mirroring Patel et al.’s find-
ings in glioblastoma (15). KDM5B encodes a H3K4
histone demethylase associated with a subpop-
ulation of slow-cycling and drug-resistant mel-
anoma stemlike cells (21, 22) in mouse models.
Immunofluorescence (IF) staining validated the
presence and mutually exclusive expression of
KDM5B and Ki67. KDM5B-expressing cells were
grouped in small clusters, consistent with ob-
servations in mouse and in vitro models (21)
(Fig. 2C and fig. S4E).
Two principal components (PC3 and PC6) pri-

marily segregated different malignant cells from
one treatment-naïve tumor (Mel79). In this tu-
mor, we analyzed 468 malignant cells from four
distinct regions after surgical resection (fig.
S5A). We identified 229 genes with higher
expression in the malignant cells of region
one compared with those of other tumor re-
gions [Fig. 2D, false discovery rate (FDR) < 0.05;
and table S6]. A similar expression program was
found in T cells from region one (fig. S6 and
table S6), suggesting a spatial effect that in-
fluences multiple cell types. The genes with
the highest preferential expression in region
one are also generally coexpressed across mela-
noma tumors profiled in bulk in The Cancer
Genome Atlas (TCGA) (23) (fig. S6). Many of
these genes encode immediate early-activation
transcription factors linked to inflammation,
stress responses, and a melanoma oncogenic pro-
gram (e.g., ATF3, FOS, FOSB, JUN, JUNB). Sev-
eral of these transcription factors (e.g., FOS,
JUN, NR4A1/2) are regulated by cyclic adenosine
monophosphate (cAMP) and cAMP response
element–binding protein signaling, which has
been implicated as a mitogen-activated protein
kinase (MAPK)–independent resistance module
in BRAF-mutant melanomas treated with RAF
and MEK inhibition (24). Other top genes dif-
ferentially up-regulated in region one included those
involved in survival (MCL1), stress responses (EGR1/2/
3,NDRG,HSPA1B), and NF-kB signaling (NFKBIZ),
which has also been associated with resistance to
RAF and MEK inhibition (25). Immunohisto-
chemistry analysis confirmed the elevated NF-kB
and JunB levels in cells of region one compared
with cells in the other regions of this tumor (fig. S5B).

Heterogeneity in the abundance
of a dormant, drug-resistant
melanoma subpopulation

Collectively, the above observations imply that
pretreatment melanoma tumors may harbor
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Fig. 2. Single-cell RNA-seq distinguishes cell cycle and other states among malignant cells.
(A) Estimation of the cell cycle state of individual malignant cells (circles) on the basis of relative ex-
pression of G1/S (x axis) and G2/M (y axis) gene sets in a low-cycling tumor (Mel79, top) and a high-
cycling tumor (Mel78, bottom). Cells are colored by their inferred cell cycle states: cycling cells, red;
intermediate, pink; and noncycling cells, gray. Cells with high expression of KDM5B (z score > 2) are
shown in green. N denotes number of cells. (B) Immunohistochemistry staining (40× magnification) for
Ki67+ cells shows concordance with the signature-based frequency of cycling cells for Mel79 and Mel78
(as for other tumors; fig S4C). (C) KDM5B and Ki67 staining (40× magnification) in corresponding
tissue showing small clusters of KDM5B-high expressing cells negative for Ki67 (fig. S4). DAPI,
4′,6-diamidino-2-phenylindole. (D) An expression program specific to region one of Mel79, identified on the
basis of multifocal sampling.The relative expression of genes (rows) is shown for cells (columns) ordered by
the average expression of the entire gene set. The region of origin of each cell is indicated in the top
panel (fig. S5).
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subsets of malignant cells that are less likely to
respond to targeted therapy. The transcriptional
programs associated with principal components
PC4 and PC5 were highly correlated with ex-
pression of the MITF gene (microphthalmia-
associated transcription factor), which encodes
the master melanocyte transcriptional regula-
tor and a melanoma lineage-survival oncogene
(26). Scoring genes by their correlation to MITF
across single cells, we identified a “MITF-high”
program consisting of MITF itself and several
MITF target genes, including TYR, PMEL, and
MLANA (table S7). A second transcriptional
program, negatively correlated with the MITF
program and with PC4 and PC5 (Pearson cor-
relation P < 10−24), included AXL and NGFR
(p75NTR), a marker of resistance to various tar-
geted therapies (27, 28) and a putative melanoma
cancer stem cell marker (29), respectively (table
S8). Thus, these transcriptional programs re-

semble reported (25, 30–32) MITF-high, as well
as MITF-low and AXL-high (“AXL-high”), transcrip-
tional profiles that can distinguish melanoma
tumors, cell lines, and mouse models. Notably,
the AXL-high program has been linked to in-
trinsic resistance to RAF and MEK inhibition
(25, 30, 31).
Although at the bulk tumor level each mel-

anoma could be classified as MITF-high or AXL-
high (Fig. 3A), at the single-cell level every tumor
contained malignant cells corresponding to both
transcriptional states. Using single-cell RNA-seq
to examine each cell’s expression of the MITF
and AXL gene sets, we observed that MITF-high
tumors, including treatment-naïve melanomas,
harbored a subpopulation of AXL-high mela-
noma cells that was undetectable through bulk
analysis, and vice versa (Fig. 3B). The malignant
cells thus spanned the continuum between AXL-
high and MITF-high states in every investigated

tumor (Fig. 3B and fig. S7). We performed IF
staining to further validate the mutually exclu-
sive expression of the MITF-high and AXL-high
programs in cells from the same bulk tumors
(Fig. 3C and fig. S8).
Because malignant cells with AXL-high and

MITF-high transcriptional states coexist in mel-
anoma, we hypothesized that treatment with RAF
and MEK inhibitors would increase the preva-
lence of AXL-high cells after the development of
drug resistance. To test this, we analyzed RNA-seq
data from a cohort (13) of six paired BRAFV600E

melanoma biopsies taken before treatment and
after resistance to single-agent RAF inhibition
(vemurafenib; 1 patient) or combined RAF and
MEK inhibition (dabrafenib and trametinib; 5
patients), respectively (tables S9 and S10). We
ranked the 12 transcriptomes on the basis of
the relative expression of all genes in the AXL-
high program compared with those in the
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Fig. 3. MITF- and AXL-
associated expression pro-
grams vary between and
within tumors, as well as
after treatment. (A) Aver-
age expression signatures for
the AXL program (y axis) or
the MITF program (x axis)
stratify tumors into MITF-
high (black) or AXL-high
(red) categories. (B) Single-
cell profiles show a negative
correlation between the AXL
program (y axis) and the
MITF program (x axis) across
individual malignant cells
within the same tumor. Cells
are colored by the relative
expression of the MITF
(black) and AXL (red)
programs. Cells in both
states are found in all
examined tumors, including
three tumors (Mel79, Mel80,
and Mel81) without prior
systemic treatment, indicat-
ing that dormant resistant
(AXL-high) cells may be
present in treatment-naïve
patients. (C) Mel81 and
Mel80 IF staining of MITF
(green nuclei) and AXL (red),
validating the mutual exclu-
sivity among individual cells
within the same tumor (fig.
S8). (D) Relative expression
(centered) of the AXL program genes (top) and MITF program genes (bot-
tom) in six matched pretreatment (white boxes) and postrelapse (gray boxes)
samples from patients who progressed through therapeutic RAF and MEK
inhibition. Numbers at the top indicate patient index. Samples are sorted by
the average relative expression of the AXL versus MITFgene sets. In all cases,
the relapsed samples had an increased ratio of AXL-to-MITF expression
compared with their pretreatment counterparts. This consistent shift of all six
patients is statistically significant (P < 0.05, binomial test), as are the individual
increases in AXL and MITF for four of the six sample pairs (P < 0.05, t test;

black and gray arrows denote increases that are individually significant or
nonsignificant, respectively). (E) Quantitative, multiplexed single-cell IF for
AXL expression (top y axes) and MAP kinase pathway inhibition (p-ERK levels,
bottom y axes) in the example cell lines WM88 and MELHO treated with
increasing concentrations (x axis) of either a RAF inhibitor alone (dark gray
bars) or a combination of RAF and MEK inhibitors (light gray bars). We
observed an increasing fraction of AXL-high cells (top panels) as well as a
dose-dependent decrease of p-ERK (bottom panels) (figs. S11 and S12 show
results for additional cell lines).
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MITF-high program. In each pair, we observed
a shift toward the AXL-high program in the drug-
resistant sample [Fig. 3D; P < 0.05 for same
effect in six of six paired samples, binomial test;
P < 0.05 for four of six individual paired-
sample comparisons shown by black arrows (17)].
RNA-seq data from an independent cohort (33)
also showed that a subset of drug-resistant
samples exhibited increased expression of the
AXL program (fig. S9). Other genes previously

implicated in resistance to RAF and MEK in-
hibition were also increased in a subset of the
drug-resistant samples. PDGFRB (platelet-derived
growth factor receptor b) (34) was up-regulated
in a similar subset as the AXL program, whereas
MET (33) was up-regulated in a mutually exclu-
sive subset (fig. S9), suggesting that AXL and MET
may reflect distinct drug-resistant states.
To further assess the connection between the

AXL program and resistance to RAF and MEK

inhibition, we studied single-cell AXL expression
in 18 melanoma cell lines from the Cancer Cell
Line Encyclopedia (35) (table S11). Flow cytometry
analysis revealed a wide distribution of the pro-
portion of AXL-positive cells, from <1 to 99%
per cell line, which correlated with bulk mRNA
levels and was inversely associated with sensi-
tivity to small-molecule RAF inhibition (table S11).
We treated 10 cell lines (17) with increasing

doses of a combination of RAF and MEK inhibitors
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Fig. 4. Deconvolution of bulk melanoma profiles reveals cell-to-cell in-
teractions. (A) Bulk tumors segregate to distinct clusters on the basis of
their inferred cell type composition. (Top panel) Heat map showing the
relative expression of gene sets defined from single-cell RNA-seq, as specific
to each of five cell types from the tumor microenvironment (y axis) across
471 melanoma TCGA bulk-RNA signatures (x axis). Each column represents
one tumor, and tumors are partitioned into 10 distinct patterns identified by
k-means clustering (vertical lines and cluster numbers at the top). Endo,
endothelial cells; Macro., macrophages. (Lower panels, from top to bottom)
Tumor purity estimated by ABSOLUTE (DNA) and RNA-seq analysis (RNA),
specimen location (from TCGA), and AXL/MITF scores. Tumors with a high
abundance of CAFs are correlated with an increased ratio of AXL-to-MITF
expression (bottom). LN, lymph node. (B) Inferred cell-to-cell interactions
between CAFs and T cells. The scatter plot compares, for each gene (circle),
the correlation of its expression with inferred T cell abundance across bulk

tumors (y axis, from TCGA transcriptomes) to the specificity of its expres-
sion in CAFs (black) versus T cells (gray) (x axis, based on single-cell tran-
scriptomes). Genes that are highly specific to CAFs in a single-cell analysis
of tumors but are also associated with high T cell abundance in bulk
tumors (red) are candidates for interaction between CAF cells and T cells.
(C) Of the 90 samples, 80 tumor specimens (black dots) show a correla-
tion (R = 0.86) between C3 and CD8 signals, as analyzed by quantitative IF.
Ten normal control specimens (gray dots) are also shown (fig. S18, A to F,
shows normalization and additional specimens). (D) Correlation coefficient
(y axis) between the average expression of CAF-derived complement
factors shown in (B) and that of T cell markers (CD3/D/E/G, CD8A/B) across
26 TCGA cancer types with >100 samples (x axis, left panel) and across 36 GTEx
(Genotype-Tissue Expression Project) tissue types with >100 samples (x axis,
right panel). Bars are colored on the basis of correlation ranges, as indicated
at the bottom.
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(dabrafenib and trametinib) and found an in-
crease in the proportion of AXL-positive cells in
6 cell lines initially composed of a small (<3%)
pretreatment AXL-positive population (fig. S10A).
In contrast, cell lines with an intrinsically high

proportion of AXL expression showed modest
or no changes (fig. S10B). We obtained similar
results by multiplexed quantitative single-cell
IF, which also demonstrated that the increased
fraction of AXL-positive cells after inhibition of

RAF and MEK is associated with rapid decreases
in extracellular signal–regulated kinase (ERK)
phosphorylation (reflecting MAP kinase signal-
ing inhibition) (Fig. 3E and figs. S11 and S12).
In summary, both melanoma tumors and cell
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Average expression of markers of cytotoxicity (Cyto.), exhaustion (Exhau.),
and naïve cell states (rows) in (from left to right) Tregs, CD4
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and CD8+ T cells. CD4+ and CD8+ T cells are each further divided into five
bins by their cytotoxic score (ratio of cytotoxic to naïve marker expression
levels), showing activation-dependent coexpression of exhaustion markers.
(Bottom) Proportion of cycling cells (calculated as in Fig. 2B). Asterisks
denote significant enrichment or depletion of cycling cells in a specific subset,
as compared with the corresponding set of CD4+ or CD8+ Tcells (P < 0.05,
hypergeometric test). (C) IFanalysis of PD-1 (top, green),TIM-3 (middle, red),
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The scatter plot shows the cytotoxic score (x axis) and exhaustion score (y
axis, average expression of the Mel75 exhaustion program as in fig. S21) of
each CD8+ T cell from Mel75. In addition to the overall correlation between
cytotoxicity and exhaustion, the cytotoxic cells can be subdivided into cells
with high (red) and low exhaustion (green), based on comparison to a
LOWESS (locally weighted scatter plot smoothing) regression (black line).

(E and F) Relative expression (log2 fold-change) in high- versus low-exhaustion
cytotoxic CD8+ Tcells from five tumors (x axis), including 28 genes that were
significantly up-regulated (P < 0.05, permutation test) in high-exhaustion
cells across most tumors (E) and 272 genes that were variably associated
with high-exhaustion cells across tumors (F). Three independently derived
exhaustion gene sets were used to define high- and low-exhaustion cells
(Mel75) (17, 46, 48), and the corresponding results are represented as
distinct columns for each tumor. (G) Expanded TCR clones. Cells were as-
signed to clusters of TCR segment usage (dark gray bars) (fig. S23), and
cluster size (x axis) was evaluated for significance by control analysis in
which TCR segments were shuffled across cells (light gray bars). The per-
centage of Mel75 cells (y axis) is shown for clusters of small size (one to four
cells) that probably represent nonexpanded cells, medium size (five or six
cells) thatmay reflect expanded clones (FDR =0.12), and large size (more than
six cells) thatmost likely reflect expanded clones (FDR =0.005). (H) Expanded
clones are depleted of nonexhausted cells and enriched for exhausted cells.
Mel75 cells were divided according to exhaustion score into categories of low
exhaustion (green, bottom 25% of cells) andmedium-to-high exhaustion (red,
top 75%). Shown is the relative frequency of these exhaustion subsets (y axis)
in each TCR-cluster group [x axis, as defined in (G)], defined as the log2 ratio of
the frequency in that group comparedwith the frequencyacross all Mel75 cells.
All values were significant (P < 10−5, binomial test).
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lines demonstrate drug-resistant tumor cell sub-
populations that precede treatment and become
enriched after MAP kinase–targeted treatment.

Nonmalignant cells and their interactions
within the melanoma microenvironment

Various nonmalignant cells make up the tu-
mor microenvironment. The composition of the
microenvironment has an important effect on
tumorigenesis and also in the modulation of
treatment responses (1). Tumor infiltration with
T cells, for example, is predictive for the response
to immune checkpoint inhibitors in various can-
cer types (36).
To resolve the composition of the melanoma

microenvironment, we used our single-cell RNA-
seq profiles to define distinct expression signa-
tures of each of five distinct nonmalignant cell
types: T cells, B cells, macrophages, endothelial
cells, and CAFs. Because our signatures were
derived from single-cell profiles, we could avoid
confounders and ensure that each signature is
determined by cell type–specific profiles (17). Next,
we used these signatures to infer the relative
abundance of those cell types in a larger com-
pendium of tumors (17) (Fig. 4A and fig. S13). We
found a strong correlation (correlation coefficient
R ~ 0.8) between our estimated tumor purity and
that predicted from DNA analysis (37) (Fig. 4A,
first lane below the heat map).
We partitioned 471 tumors from TCGA into

10 distinct microenvironment clusters on the
basis of their inferred cell type composition (Fig.
4A). Clusters were mostly independent of the site
of metastasis (Fig. 4A, second lane), with some
exceptions (e.g., clusters 8 and 9). Next we ex-
amined how these different microenvironments
may relate to the phenotype of the malignant
cells. In particular, CAF abundance is predictive
of the AXL-MITF distinction, with CAF-rich tu-
mors expressing the AXL-high signature (Fig. 4A,
bottom lane). Interestingly, an AXL-high program
was expressed by both melanoma cells and CAFs.
However, we distinguished AXL-high genes that
are preferentially expressed by melanoma cells
(“melanoma-derived AXL program”) from those
that are preferentially expressed by CAFs (“CAF-
derived AXL program”). Both sets of genes were
correlated with the inferred CAF abundance in
tumors from TCGA (fig. S14) (38). Furthermore,
the MITF-high program, which is specific to mela-
noma cells, was negatively correlated with in-
ferred CAF abundance. Taken together, these
results suggest that CAF abundance may be linked
to preferential expression of the AXL-high over
the MITF-high program by melanoma cells. Thus
it is possible that specific tumor-CAF interactions
may shape the melanoma cell transcriptome.
Interactions between cells play crucial roles

in the tumor microenvironment (1). To assess
how cell-to-cell interactions may influence tumor
composition, we searched for genes expressed by
cells of one type that may influence or reflect the
proportion of cells of a different type in the tu-
mor (fig. S15). For example, we searched for genes
expressed primarily by CAFs (but not T cells) in
single-cell data that correlated with T cell abun-

dance (as inferred by T cell–specific genes) in bulk
tumor tissue from the TCGA data set (23). We
identified a set of CAF-expressed genes that cor-
related strongly with T cell infiltration (Fig. 4B,
red circles). These included known chemotactic
(CXCL12 and CCL19) and immune-modulating
(PD-L2) genes, which are expressed by both CAFs
and macrophages (fig. S16). A separate set of genes,
exclusively expressed by CAFs, that correlated
with T cell infiltration (fig. S16) included multi-
ple complement factors [C1S, C1R, C3, C4A, CFB,
and C1NH (SERPING1)]. Notably, these comple-
ment genes were specifically expressed by fresh-
ly isolated CAFs but not by cultured CAFs (fig.
S17) or macrophages (fig. S16). These findings
are intriguing, as studies have implicated com-
plement activity in the recruitment and mod-
ulation of T cell–mediated antitumor immune
responses [in addition to their role in augment-
ing innate immunity (39)].
We validated a high correlation (R > 0.8) be-

tween complement factor 3 (C3) levels (one of the
CAF-expressed complement genes) and infiltra-
tion of CD8+ T cells. We performed dual IF stain-
ing and quantitative slide analysis of two tissue
microarrays with a total of 308 core biopsies,
including primary tumors, metastatic lesions,
normal skin with adjacent tumor, and healthy
skin controls (Fig. 4C and fig. S18) (17). To test
the generalizability of the association between
CAF-derived complement factors with T cell in-
filtration, we expanded our analysis to bulk RNA-
seq data sets across all TCGA cancer types (Fig.
4D). Consistent with the results in melanoma,
complement factors correlated with inferred T
cell abundance in many cancer types and more
highly than in normal tissues (e.g., R > 0.4 for
65% of cancer types but only for 14% of normal
tissue types). Although correlation analysis can-
not determine causality, this indicates a potential
in vivo role for cell-to-cell interactions.

Diversity of tumor-infiltrating T
lymphocytes and their functional states

The activity of TILs, particularly CD8+ T cells, is
a major determinant of successful immune sur-
veillance. Under normal circumstances, effector
CD8+ T cells exposed to antigens and costimu-
latory factors may mediate lysis of malignant
cells and control tumor growth. However, this
function can be hampered by tumor-mediated T
cell exhaustion, such that T cells fail to activate
cytotoxic effector functions (40). Exhaustion is
promoted through the stimulation of coinhibi-
tory checkpoint molecules on the T cell surface
(PD-1, TIM-3, CTLA-4, TIGIT, LAG3, and others)
(41); blockade of checkpoint mechanisms has
shown clinical benefit in subsets of melanoma
and other malignancies (3, 10, 42, 43). Although
checkpoint ligand expression (e.g., PD-L1) and
neoantigen load clearly contribute (9, 44, 45),
no biomarker has emerged that reliably predicts
the clinical response to immune checkpoint block-
ade. We reasoned that single-cell analyses might
yield features to elucidate response determi-
nants and possibly identify new immunother-
apy targets.

Thus, we analyzed the single-cell expression
patterns of 2068 T cells from 15 melanomas. We
identified T cells and their main subsets [CD4+,
regulatory T cells (Tregs), and CD8+] on the basis
of the expression levels of their respective defin-
ing surface markers (Fig. 5A, top, and table S12).
Within both the CD4+ and CD8+ populations, a
PCA distinguished cell subsets and heterogene-
ity of activation states on the basis of the expres-
sion of naïve and cytotoxic T cell genes (Fig. 5, A
and B, and fig. S19).
Next we sought to determine the exhaustion

status of each cell from the expression of key
coinhibitory receptors (PD1, TIGIT, TIM3, LAG3,
and CTLA4). In several cases, these coinhibitory
receptors were coexpressed across individual cells;
we validated this phenomenon for PD1 and TIM3
by IF staining (Fig. 5C). However, exhaustion gene
expression was also highly correlated with the
expression of both cytotoxicity markers and
overall T cell activation states (Fig. 5B). This
observation resembles an activation-dependent
exhaustion expression program, such as those
reported previously (46, 47). Accordingly, expression
of coinhibitory receptors (alone or in combina-
tions) may not be sufficient by itself to characterize
the salient functional state of tumor-associated
T lymphocytes in situ or to distinguish exhaus-
tion from activation.
To define an activation-independent exhaus-

tion program, we leveraged single-cell data from
CD8+ T cells sequenced in a single tumor (Mel75,
314 cells). These data allowed cytotoxic and
exhaustion programs to be deconvolved. Spe-
cifically, PCA of Mel75 T cell transcriptomes
identified a robust expression module that con-
sisted of all five coinhibitory receptors and other
exhaustion-related genes, but not cytotoxicity
genes (fig. S21 and table S13).
We used the Mel75 exhaustion program, along

with previously published exhaustion programs
(46, 48), to estimate the exhaustion state of each
cell. An exhaustion state was defined as high or
low expression of the exhaustion program rela-
tive to that of the cytotoxicity genes (Fig. 5D) (17).
Accordingly, we defined exhaustion states in
Mel75 and in four additional tumors with the
highest number of CD8+ T cells (68 to 214 cells
per tumor). We identified the top preferentially
expressed genes in high-exhaustion cells com-
pared with low-exhaustion cells (both defined
relative to the expression of cytotoxicity genes).
This allowed us to define a core exhaustion sig-
nature across cells from various tumors.
Our core exhaustion signature yielded 28

genes that were consistently up-regulated in
high-exhaustion cells of most tumors, including
coinhibitory (TIGIT) and costimulatory (TNFRSF9/
4-1BB and CD27) receptors (Fig. 5E and table S14).
In addition, most genes that were significantly
up-regulated in high-exhaustion cells of at least
one tumor had distinct associations with exhaus-
tion across the different tumors (Fig. 5F, 272 of
300 genes with P < 0.001 by permutation test;
fig. S22, A and B; and table S14). These tumor-
specific signatures included variable expression
of known exhaustion markers (table S14) and
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could be linked to immunotherapeutic response
or might reflect the effects of previous treatments.
For example, CTLA-4 was highly up-regulated in
exhausted cells of Mel75 and weakly up-regulated
in three other tumors but was completely decou-
pled from exhaustion in Mel58. Interestingly,
Mel58 was derived from a patient with an ini-
tial response and subsequent development of
resistance to CTLA-4 blockade with ipilimumab
(Fig. 5F and fig. S22C). Another variable gene of
interest was the transcription factor NFATC1,
previously implicated in T cell exhaustion (49).
NFATC1 and its target genes were preferentially
associated with the activation-independent ex-
haustion phenotype in Mel75 (fig. S22, D and
E), suggesting a potential role of NFATC1 in the
underlying variability of exhaustion programs
among patients.
Finally, we explored the relationship between

T cell states and clonal expansion. T cells that
recognize tumor antigens may proliferate to
generate discernible clonal subpopulations de-
fined by an identical T cell receptor (TCR) se-
quence (50). To identify potentially expanded T
cell clones, we used RNA-seq reads that map to
the TCR to classify single T cells by their iso-
forms of the V and J segments of the a and b TCR
chains, and we searched for enriched combina-
tions of TCR segments. Most observed combi-
nations were found in few cells and were not
enriched. However, approximately half of the
CD8+ T cells in Mel75 had one of the seven en-
riched combinations identified (FDR = 0.005) and
thus may represent expanded T cell clones (Fig.
5G and fig. S23). This putative T cell expansion
was also linked to exhaustion (Fig. 5H), such that
low-exhaustion T cells were depleted in expanded
T cells (TCR clusters with more than six cells)
and enriched in nonexpanded T cells (TCR clus-
ters with one to four cells). In particular, the
nonexhausted cytotoxic cells are almost all non-
expanded cells (Fig. 5H). Overall, this analysis
suggests that single-cell RNA-seq may allow for
the inference of functionally variable T cell pop-
ulations that are not detectable with other pro-
filing approaches (fig. S24). This knowledge may
empower studies of tumor response and resist-
ance to immune checkpoint inhibitors.

Conclusions

Our analysis has uncovered intra- and interindi-
vidual, spatial, functional, and genomic hetero-
geneity in melanoma cells and associated tumor
components that shape the microenvironment,
including immune cells, CAFs, and endothelial
cells. We identified a cell state in a subpopu-
lation of all melanomas studied that is linked to
resistance to targeted therapies, and we used a
variety of approaches to validate the presence of
a dormant drug-resistant population in a num-
ber of melanoma cell lines.
By leveraging single-cell profiles from a few

tumors to deconvolve a large collection of bulk
profiles from TCGA, we discovered different micro-
environments associated with distinct malig-
nant cell profiles. We also detected a subset of
genes expressed by one cell type (e.g., CAFs) that

may influence the proportion of other cell types
(e.g., T cells); this indicates the importance of in-
tercellular communication for tumor phenotype.
Putative interactions between stromal-derived
factors and immune cell abundance in melanoma
core biopsies suggest that future diagnostic and
therapeutic strategies should account for tumor
cell composition rather than bulk expression.
Furthermore, our data suggest potential bio-
markers for distinguishing exhausted and cyto-
toxic T cells that may aid in selecting patients
for immune checkpoint blockade.
Although future work is necessary to clarify

the interplay between these cell types and func-
tional states in space and time, the ability to
carry out a number of highly multiplexed single-
cell observations within a tumor allows us to
identify meaningful cell subpopulations and gene
expression programs that may inform both the
analysis of bulk transcriptional data and precision
treatment strategies. Conceivably, single-cell genomic
profiling may soon enable a deeper understanding
of the complex interplay among cells within the
tumor ecosystem and its evolution in response
to treatment, thereby providing a versatile new
tool for future translational applications.
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