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SUMMARY
Cellular plasticity associated with fluctuations in transcriptional programs allows individual cells in a tumor to
adopt heterogeneous differentiation states and switch phenotype during their adaptive responses to thera-
pies. Despite increasing knowledge of such transcriptional programs, the molecular basis of cellular plas-
ticity remains poorly understood. Here, we combine multiplexed transcriptional and protein measurements
at population and single-cell levels with multivariate statistical modeling to show that the state of AP-1 tran-
scription factor network plays a unifying role in explaining diverse patterns of plasticity in melanoma. We find
that a regulated balance among AP-1 factors cJUN, JUND, FRA2, FRA1, and cFOS determines the intrinsic
diversity of differentiation states and adaptive responses to MAPK inhibitors in melanoma cells. Perturbing
this balance through genetic depletion of specific AP-1 proteins, or byMAPK inhibitors, shifts cellular hetero-
geneity in a predictable fashion. Thus, AP-1 may serve as a critical node for manipulating cellular plasticity
with potential therapeutic implications.
INTRODUCTION

Individual cells, even those derived from the same clone,

respond heterogeneously to environmental perturbations

(Mitchell and Hoffmann, 2018; Munsky et al., 2012). Nongenetic

heterogeneity can arise because of variances associated with

transcriptional state plasticity (Battich et al., 2015; Gupta et al.,

2011; Munsky et al., 2012; Symmons and Raj, 2016). Although

such plasticity is required for the proper development of com-

plex organisms (Arias and Hayward, 2006), it limits the efficacy

of therapies that target abnormally activated signaling pathways

(Boumahdi and de Sauvage, 2020; Sharma et al., 2010). An

example of cell-to-cell transcriptional heterogeneity with pheno-

typic consequences for therapy resistance is observed in mela-

nomas (Emert et al., 2021; Fallahi-Sichani et al., 2017; Shaffer

et al., 2017). Numerous studies have associated fluctuations in

the state of MAPK inhibitor sensitivity across BRAF-mutant mel-

anoma cells to intrinsic variations in their differentiation state

(Baron et al., 2020; Belote et al., 2021; Khaliq et al., 2021; Ram-

bow et al., 2018; Tsoi et al., 2018; Wouters et al., 2020). The

reported heterogeneity spans a range of transcriptionally distin-

guishable states, including a melanocytic phenotype that ex-

presses melanocyte lineage markers SOX10 and MITF (Lin and

Fisher, 2007), to less drug-sensitive states, including neural
This is an open access article under the CC BY-N
crest-like cells that express NGFR (Fallahi-Sichani et al., 2017;

Mica et al., 2013) and innately drug-resistant, undifferentiated

cells characterized by the overexpression of AXL and loss of

SOX10 and MITF (Konieczkowski et al., 2014; M€uller et al.,

2014). In addition to intrinsic disparities in differentiation state,

drug-induced responses may help a fraction of cells rewire their

state of MAPK inhibitor sensitivity, most commonly through

adaptive changes in differentiation state (Fallahi-Sichani et al.,

2017; Marin-Bejar et al., 2021; Rambow et al., 2018; Smith

et al., 2016) or via reactivation of the MAPK pathway (Gerosa

et al., 2020; Lito et al., 2012). Although the emergence and con-

sequences of such intrinsic and adaptive heterogeneities are

widely recognized, there is still more to learn about their origins

and possible connection at a molecular level. For example, it is

unclear whether these seemingly distinct forms of heterogeneity

arise from independent mechanisms or whether the observed

variability in the initial state of cells and adaptive changes

following MAPK inhibitor treatment could both be traced back

to a common subset of molecular players.

Transcription factor networks that regulate the expression of

genes in response to signaling pathway perturbations play a

key role in creating the biological noise that leads to population

heterogeneity (Huang, 2009; Pedraza and van Oudenaarden,

2005). The AP-1 protein family is one such network that serves
Cell Reports 40, 111147, August 2, 2022 ª 2022 The Author(s). 1
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as a major transcription node, integrating inputs from the up-

streamMAPK signaling pathway (Karin, 1995). In addition to link-

ing signal transduction to transcription, AP-1 proteins have been

recently identified to serve as pioneer factors, establishing chro-

matin states that predispose cells to transcriptional programs

driven by other transcription factors or histone modifications,

thereby guiding cells towards paths of differentiation or cell state

reprogramming (Madrigal and Alasoo, 2018; Martı́nez-Zamudio

et al., 2020; Phanstiel et al., 2017; Vierbuchen et al., 2017). These

roles are consistent with numerous reports on AP-1 proteins’ be-

ing involved in resistance to MAPK inhibitors, cell-state hetero-

geneity, and therapy-induced dedifferentiation in melanomas

and other cancers (Emmons et al., 2019; Fallahi-Sichani et al.,

2015, 2017; Haas et al., 2021; Johannessen et al., 2013; Kong

et al., 2017; Maurus et al., 2017; Ramsdale et al., 2015; Riesen-

berg et al., 2015; Torre et al., 2021; Wouters et al., 2020). Despite

these reports, we lack a clear understanding of the rules that

define AP-1 behavior and its role in explaining the intrinsic plas-

ticity and the diversity of adaptive responses to MAPK signaling

perturbations. This gap in our knowledgemay be addressed by a

system-wide analysis with single-cell precision to reveal interde-

pendencies between an array of AP-1 proteins, which constitute

more than a dozen transcription factors, including JUN, FOS,

and ATF subfamilies (Rodrı́guez-Martı́nez et al., 2017), their

post-translational modification states, and their association

with melanoma cell phenotypes at a single-cell level.

In this study, we test the hypothesis that the state of the AP-1

transcription factor network determines the intrinsic diversity of

phenotypic states (i.e., differentiation states) and drug-induced

changes in MAPK signaling in BRAF-mutated melanoma cells.

We define the AP-1 state as the combinatorial concentrations

of AP-1 proteins, their phosphorylation state, and their transcrip-

tional activity, which are either measurable experimentally or

inferable by using bioinformatics tools. Our systems biology

approach combines multiplexed measurements of the AP-1

state, MAPK signaling activity, and differentiation state, at pop-

ulation and single-cell levels, across many genetically character-

ized melanoma cell lines before and after their exposure to

BRAF/MEK inhibitors. We apply statistical learning to capture

the predictivity of AP-1 states, and corresponding AP-1 factors,

for phenotypic heterogeneity in melanoma cultures and patient-

derived tumors. We then use RNAi-mediated knockdown exper-

iments to validate the causality of our statistical predictions in

heterogeneous melanoma cell populations. We find that a tightly

regulated balance between AP-1 transcription factors cJUN,

JUND, FRA2, FRA1, and cFOS and their transcriptional activity

determines the baseline differentiation state of melanoma cells.

This balance is perturbed following MAPK pathway inhibition.

Nevertheless, MAPK inhibitor-induced changes in the AP-1

state, including the abundance of cJUN and its phosphorylation,

as well as the phosphorylation state of FRA1, remain strong pre-

dictors of drug-induced changes in differentiation state and the

efficiency of MAPK pathway inhibition, respectively. These re-

sults show that the state of AP-1 network offers a critical tran-

scriptional context, which controls not only the initial state of

melanoma cells and their population heterogeneity but also their

adaptive changes immediately following MAPK pathway

inhibition.
2 Cell Reports 40, 111147, August 2, 2022
RESULTS

Single-cell AP-1 protein levels predict differentiation
state heterogeneity in melanoma cells
Toquantify the baseline heterogeneities in differentiation state and

to assess their covariation with AP-1 proteins across genetically

diverse or isogenic melanoma cell populations, we used an itera-

tive indirect immunofluorescence imaging (4i) protocol (Gut et al.,

2018) in conjunction with high-throughput automated microscopy

(Figure 1A).Wemultiplexedmeasurements of 21 proteins using 4i-

validated antibodies in 19 BRAF-mutant melanoma cell lines (Fig-

ure 1B). The measurements included total levels of eleven AP-1

transcription factors (cFOS, FRA1, FRA2, cJUN, JUNB, JUND,

ATF2, ATF3, ATF4, ATF5, and ATF6), six AP-1 phosphorylation

states (p-cFOSS32, p-FRA1S265, p-cJUNS73, p-ATF1S63, p-

ATF2T71, and p-ATF4S245), and four differentiation state markers

(MITF, SOX10, NGFR, and AXL). Importantly, these four differenti-

ation state markers were previously reported to represent tran-

scriptionally distinct melanoma differentiation states (Khaliq

et al., 2021; Tsoi et al., 2018). The panel of 19 melanoma cell lines

tested represented a broad spectrum of differentiation states,

including populations of melanocytic (MITFHigh/SOX10High/

NGFRLow/AXLLow), transitory (MITFHigh/SOX10High/NGFRHigh/

AXLLow), neural crest-like (MITFLow/SOX10High/NGFRHigh/AXLHigh),

and undifferentiated (MITFLow/SOX10Low/NGFRLow/AXLHigh) cells

(Figures 1C and S1A). We and others have shown that the fre-

quency of these states in melanoma cell populations varies from

one tumor to another and predicts their overall sensitivity to

MAPK inhibitors (Khaliq et al., 2021; Rambow et al., 2018; Tirosh

et al., 2016).Here,weaskedwhether theobservedheterogeneities

in differentiation state could be explained by variations in patterns

of AP-1 measurements at a single-cell level.

The population-averaged and single-cell protein data revealed

a high degree of variation in differentiation state markers and

AP-1 proteins across genetically distinct cell lines (Figures 1B,

1C, and S1A). To test whether there is a relationship between

AP-1 variations and the differentiation state of individual cells

regardless of their genetic differences, we randomly sampled a

total of 10,000 cells, including 2,500 from each of the four differ-

entiation states, in a way that they represented all 19 cell lines

and 4 distinctive differentiation states as equally as possible (Fig-

ure 1D).We used themultiplexed AP-1 data of 80%of the cells to

train a random forest classification model to predict the differen-

tiation state of each individual cell. We then used the remaining

20% of the cell population to independently validate model pre-

dictions. Model-predicted single-cell differentiation states

matched true (measured) differentiation states with accuracy of

0.74, representing a remarkable performance relative to a

random 4-class classifier with an expected accuracy of 0.25

(Figure 1E). A close look at model predictions showed that they

matched true states for �88% of undifferentiated cells, �72%

of neural crest-like cells, and �66% of melanocytic cells. In

cases in which the true and predicted state of a cell did not

match, the model often predicted a closely related neighboring

state along the differentiation state trajectory. When we com-

bined cells from these related states (e.g., cells in melanocytic

and transitory states), the model was able to distinguish them

from the other two states in �93% of the cases (Figure 1E).
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Figure 1. Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma cells

(A) Schematic representation of the iterative indirect immunofluorescence imaging (4i) procedure used in this study to generate multiplexed single-cell data on 17

AP-1 proteins and 4 differentiation state markers. Representative images of selected AP-1 transcription factors and differentiation state markers are shown for

LOXIMVI cells. Scale bars represent 20 mm. Hoechst staining of nuclei is shown in blue, while staining of the indicated protein is shown in red.

(B) Population-averaged measurements of 17 AP-1 proteins and 4 differentiation state markers acquired across 19 BRAF-mutant melanoma cell lines. Protein

data shown for each condition represent the log-transformedmean values for two replicates, followed by Z scoring across all cell lines. Data are organized only on

the basis of hierarchical clustering of AP-1 protein measurements with Pearson correlation distance metric and the average algorithm for computing distances

between clusters.

(C) Natural frequency of cells in each differentiation state (defined on the basis of MITF, SOX10, NGFR, and AXL levels) across 19 BRAF-mutant melanoma cell

lines.

(D) The percentage of cells sampled from each of the 19 cell lines and their corresponding differentiation states used in the random forest model.

(legend continued on next page)

Cell Reports 40, 111147, August 2, 2022 3

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
To identify those AP-1 measurements that most strongly pre-

dicted single-cell differentiation state, we computed the shapley

additive explanations (SHAP) values for the random forest clas-

sifications (Lundberg et al., 2020). SHAP assigns each AP-1

factor an importance value, quantifying its contribution, either

positively or negatively, to the predicted differentiation state of

any given cell (Figure 1F). Among the most important AP-1 fac-

tors (ranked on the basis of mean absolute SHAP values) were

p-cFOS, FRA2, ATF4, cFOS, p-FRA1, and cJUN. Single-cell

measurements of these six factors made it possible to predict

the differentiation state of a cell with accuracy of 0.67

(Figure 1G).

We then asked whether models trained on the basis of the top

six AP-1 factors would be able to predict the differentiation state

of new cells from independent cell lines not included in model

training. To answer this question, we iteratively removed one

cell line, built a model using randomly sampled cells from the re-

maining 18 cell lines, and then used the trained model to predict

the differentiation state of randomly selected cells from the left-

out cell line. We observed that prediction accuracy for left-out

cell lines was variable, with an average value of 0.49 ± 0.14

across all 19 iterations (Figures S1B and S1C). We also noticed

that although prediction accuracy for some left-out cell lines

was greater than that of the full model (e.g., �0.87 for LOXIMVI

cells), predictions for two left-out cell lines (including IGR39

and SKMEL19) underperformed the random model. To test

whether the lower performance of model predictions for a few

cell lines could be attributed to any common patterns of misclas-

sification, we examined the single-cell predictions for each left-

out cell line separately (Figure S1D). We found that in most

cases, misclassification occurred when the model failed to

distinguish between closely related neighboring states (e.g.,

neural crest-like versus undifferentiated cells in IGR39 or transi-

tory versus neural crest-like cells in SKMEL19). When we com-

bined cells from such closely related states, the models were

able to distinguish them from the other two states in >80% of

the cases (Figure S1C).

Together, these analyses revealed that the heterogeneity in

melanoma differentiation state was associated with distinguish-

able patterns of variation in the expression of a few key AP-1 pro-

teins. In agreement with the SHAP analysis and model validation

results, dimensionality reduction by uniform manifold approxi-

mation and projection (UMAP) (Becht et al., 2018) using only

the top six AP-1 factors resulted in a cell trajectory ordered

from melanocytic to undifferentiated states (Figures 1H and 1I).

The UMAP projection also showed that melanocytic and transi-

tory cells expressed substantially higher levels of p-cFOS, cFOS,
(E) Confusion matrix showing the independent validation performance of the rand

single-cell AP-1 measurements. The model was trained using a group of 8,000

accuracy and area under the receiver operating characteristic curve (ROC AUC)

(F) Distributions of shapley additive explanations (SHAP) scores for each AP-1 fa

dicates the Z score-scaled, log-transformed level of each AP-1 protein at a single

of the mean absolute values of their SHAP scores.

(G) Classification performance of the random forest model on the basis of varying

dictors.

(H) UMAP analysis of the sampled melanoma cells (as shown in D) on the basis of

ATF4, cFOS, p-FRA1, and cJUN). Cells are colored on the basis of their differen

(I) Single-cell levels of the top six AP-1 proteins overlaid on UMAP plots for repre
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and ATF4, whereas undifferentiated cells exhibited lower levels

of all these factors and instead exhibited increased levels of

FRA2, cJUN, and p-FRA1.

AP-1 transcript levels predict variations in
differentiation state programs across melanoma lines
To test whether the relationships between the patterns of AP-1

expression and melanoma differentiation state were recapitu-

lated at the transcriptional level, we analyzed a previously pub-

lished dataset, including RNA sequencing of 53 melanoma cell

lines (Tsoi et al., 2018). Each cell line was assigned a series of

seven signature scores, defined as the average of Z scores for

the expression levels of differentiation state signature genes

(Tsoi et al., 2018). The differentiation signature scores were

then related to the transcript levels of 15 AP-1 genes for each

cell line by partial least-squares regression (PLSR) (Figure 2A).

The overall performance of the PLSR model was evaluated by

computing the fraction of variance in signature scores explained

(R2) or predicted (Q2) by changes in AP-1 gene expression (Fig-

ure 2B). The model revealed high performance and prediction

accuracy with R2 of 0.72 and Q2 of 0.55 (using leave-one-out

cross-validation) for four PLSR components. To evaluate the ac-

curacy of predictions for each differentiation state, we assessed

the correlation between the signature scores derived from the

differentiation signature genes and scores predicted by the

PLSR model. The model showed consistent accuracy, with an

average Pearson’s correlation coefficient of 0.74 ± 0.08 (p =

3.2 3 10�17 to 1.3 3 10�6) between the actual and predicted

signature scores (Figure 2A). To independently validate the

model predictions, we used RNA sequencing data from a

different panel of 32 BRAF-mutant melanoma cell lines in the

Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019).

The PLSR model trained against the original set of 53 cell lines

was able to predict the differentiation signature scores in the

new set of 32 melanoma cell lines, leading to an average Pear-

son’s correlation coefficient of 0.65 ± 0.13 (p = 2.3 3 10�8 to

6.83 10�3) between the actual and predicted scores (Figure 2C).

The high performance of the PLSR model shows that varia-

tions in the transcriptional levels of at least some AP-1 genes

may explain the variability in differentiation states across mela-

noma cell lines. In agreement with this expectation, different

cell lines could be separated by their PLSR scores on the basis

of their positions along the different state trajectory (Figure 2D).

Because the PLSR model achieved its maximum prediction ac-

curacy by four components, we computed the variable impor-

tance in projection (VIP) scores across all these components to

determine the overall contribution of each AP-1 gene to each
om forest classifier in predicting the differentiation state of cells on the basis of

cells and validated using an independent group of 2,000 cells. The prediction

are shown as an overall measure of the classifier performance.

ctor across individual cells from the independent validation set. The color in-

-cell level. For each differentiation state, AP-1 factors are ordered on the basis

numbers of top AP-1 factors (on the basis of their SHAP values) used as pre-

their multiplexed levels of top 6 predictive AP-1 measurements (FRA2, p-cFOS,

tiation states.

sentative cell lines.
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Figure 2. AP-1 transcript levels predict variations in differentiation state across melanoma lines

(A) Comparison between differentiation signature scores computed on the basis of RNA sequencing data for 53 cell lines reported by Tsoi et al. (left) and PLSR-

predicted scores (following leave-one-out cross-validation) for each cell line on the basis of their transcript levels of 15 AP-1 genes (right). M, melanocytic; MT,

melanocytic-transitory; T, transitory; TN, transitory-neural crest-like; N, neural crest-like; NU, neural crest-like-undifferentiated; U, undifferentiated.

(B) Performance of the PLSRmodel evaluated by computing the fraction of variance in differentiation signature scores explained (R2) or predicted on the basis of

leave-one-out cross validation (Q2) with increasing number of PLS components.

(C) Comparison between differentiation signature scores computed on the basis of RNA sequencing data of 32 CCLE cell lines (left) and predicted scores on the

basis of the PLSR model built for the original set of 53 cell lines (right).

(D) PLSR scores (of the first two PLS components) for each cell line colored according to their differentiation signature scores for melanocytic, transitory, neural

crest-like, and undifferentiated states.

(E) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations of AP-1 transcripts that are predictive of differentiation signature

scores for melanocytic, transitory, neural crest-like, and undifferentiated states. The sign of the VIP score shows whether the indicated variable (AP-1 transcript

level) positively or negatively contributes to a given differentiation signature. Significant VIP scores (of greater than 1 or smaller than �1) are highlighted.

(F) Comparison of performance (with respect to differentiation state prediction) between the PLSRmodel based on transcript levels of the top 8 AP-1 transcription

factors with models based on transcript levels of combinations of 8 randomly chosen bZIP family transcription factors (n = 13 105 iterations; left panel) or built on

the basis of 8 randomly chosen transcription factors (n = 5 3 105 iterations; right panel). Empirical p values were reported for the comparison of predicted var-

iances on the basis of ten-fold cross-validation.
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differentiation state (Figure 2E). Among the most important pre-

dictors of differentiation state (determined by |VIP| > 1) were the

expression of FOS (encoding cFOS), FOSL1 (encoding FRA1),

FOSL2 (encoding FRA2), JUN (encoding cJUN), JUNB, JUND,

ATF2, and ATF4 (Figure 2E). Importantly, a model created using

only these AP-1 genes was able to significantly outperform most

PLSR models that were built on the basis of combinations of

eight randomly chosen transcription factors from the basic

leucine zipper (bZIP) family (the family to which AP-1 factors

belong) (p = 0.008) or on the basis of any eight randomly chosen

transcription factors (p = 0.01) (Figure 2F).

Together, these analyses revealed that the predictivity of pat-

terns of AP-1 variation for melanoma differentiation state could

also be captured at the level of transcription of these factors.
Except for ATF4, the statistical association of AP-1 factors with

differentiation state was generally consistent across bulk tran-

script and single-cell protein measurements (Figure S2A). Mela-

nocytic and transitory cells expressed substantially higher levels

of FOS transcript and cFOS protein levels, whereas undifferenti-

ated cells were associated with increased levels of FOSL1,

FOSL2, and JUN transcripts and their corresponding proteins

FRA1, FRA2, and cJUN, respectively.

Single-cell network inference reveals the role of AP-1
activity in regulation of differentiation programs
Next, we asked whether the statistical associations between

the identified key AP-1 proteins and single-cell differentiation

states resulted from the active regulation of differentiation
Cell Reports 40, 111147, August 2, 2022 5
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Figure 3. Single-cell network inference reveals the role of AP-1 activity in regulation of differentiation state programs

(A–D) Single-cell distributions of the activity of SCENIC regulons for FOSL2 (A), JUN (B), FOSL1 (C), and FOS (D) motifs, measured using AUCell in individual cells

(from 10 melanoma cell lines profiled by Wouters et al.) across distinct differentiation states. The differentiation state of individual cells was determined on the

basis of their gated levels of enrichment (quantified by AUCell) for the differentiation gene signatures as defined by Tsoi et al.

(E–I) Single-cell distributions of the AUCell activity of SCENIC regulons for FOSL2 (E), JUN (F), FOSL1 (G), and FOS (H) motifs, as well as the ratio of FOS and JUN

regulon activities (I), quantified in individual cells from 11 treatment-naive melanoma tumors as profiled by Tirosh et al. and Jerby-Arnon et al. Statistical com-

parisons were performed using two-sided unpaired t tests. Boxplot hinges correspond to the lower and upper quartiles, with a band at the median. Whiskers

indicate 1.5 times interquartile ranges.

Article
ll

OPEN ACCESS
programs by the AP-1 factors. To address this question, we

applied single-cell regulatory network inference and clustering

(SCENIC) (Aibar et al., 2017; Van de Sande et al., 2020) to

analyze a previously published single-cell RNA sequencing

dataset of 10 melanoma cell lines (Wouters et al., 2020).

SCENIC uses single-cell gene expression data to infer tran-

scription factors alongside their candidate target genes (collec-

tively called a regulon), enabling the identification of regulatory

interactions and transcription factor activities with high

confidence. In line with our results from the gene and protein
6 Cell Reports 40, 111147, August 2, 2022
expression analyses, SCENIC analysis found the FOSL2 and

JUN motif regulons to be substantially enriched in populations

of undifferentiated cells in comparison with melanocytic, transi-

tory, and neural crest-like cells (Figures 3A and 3B). The activity

of the FOSL1 regulon was low in melanocytic cells but gradually

increased among transitory, neural crest-like, and undifferenti-

ated cells (Figure 3C). The FOS regulon, on the other hand, was

substantially enriched in melanocytic and transitory cells, but

its activity was low in undifferentiated and neural crest-like cells

(Figure 3D).
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To test whether the relationship between AP-1 regulon activ-

ities and melanoma differentiation states existed in single cells

derived from tumor biopsies, we performed differentiation state

enrichment and SCENIC analysis on single-cell RNA sequencing

data previously collected via dissociation and profiling of

patient-derived melanoma samples (Jerby-Arnon et al., 2018;

Tirosh et al., 2016). Accounting for missing values in a subset

of differentiation signature genes, enrichment analysis of the

11 treatment-naivemelanoma samples distinguished single cells

from melanocytic and undifferentiated states with high confi-

dence. SCENIC analysis of these cells showed that FOSL2,

JUN, and FOSL1 regulons were significantly enriched in undiffer-

entiated cells in comparison with melanocytic cells (Figures 3E–

3G). In contrast to a substantially higher FOS regulon activity

observed in cultured melanocytic cells, the activity of FOS

regulon was only slightly higher in melanocytic tumor cells in

comparison with undifferentiated cells (Figure 3H). Interestingly,

however, the FOS/JUN activity ratio at a single-cell level was

able to distinguish melanocytic cells from undifferentiated cells

more efficiently than either of these AP-1 factors alone (Figure 3I),

suggesting that it is the balance between AP-1 factor activities

that determines a cell’s differentiation state.

Next, we asked how the key AP-1 transcription factor activities

and their activity ratios varied between the widely recognized

two-class ‘‘proliferative’’ and ‘‘invasive’’ phenotypes in mela-

noma cells (Hoek et al., 2006). Following single-cell enrichment

analysis of the transcriptional signatures defined for these phe-

notypes (Hoek et al., 2006), we compared their associations

with the activity of key AP-1 regulons inferred by SCENIC. As ex-

pected, the invasive phenotype exhibited higher activities of

FOSL1, FOSL2, and JUN, whereas proliferative cells showed a

higher FOS/JUN activity ratio (Figures S2B–S2K). Together,

these analyses revealed that melanoma cells of diverse differen-

tiation states are associated with distinct regulatory network ac-

tivities by AP-1 transcription factors. In particular, the role of

FOS, FOSL1, FOSL2, and JUN regulon activities was consistent

with their corresponding patterns of gene and protein expression

across melanoma differentiation states at both population and

single-cell levels.

MAPK inhibitor-induced changes in the AP-1 state pre-
dict changes in differentiation state
Although melanoma populations consist of stable mixtures of

cells in diverse differentiation states at baseline, they can switch

state in response to environmental perturbations. Specifically,

treatment with MAPK inhibitors has been reported to induce

changes in cell state that are associated with either activation

of an MITFHigh program triggering melanocytic differentiation

(Rambow et al., 2018; Smith et al., 2016) or downregulation of

MITF activity and induction of an NGFRHigh, neural crest-like

state (Fallahi-Sichani et al., 2017; Rambow et al., 2018). Such

adaptive phenotype switching occurs with as little as 3 days of

exposure to MAPK inhibitors and concomitantly with changes

in MITF and NGFR protein expression (Khaliq et al., 2021). To

determine common patterns of AP-1 changes that might be

associated with drug-induced changes in differentiation state

in either direction (i.e., differentiation or dedifferentiation), we

exposed 18 BRAF-mutant melanoma cell lines to the BRAF
inhibitor vemurafenib (at 0.316 mM) either alone or in combination

with the MEK inhibitor trametinib (at 0.0316 mM). We fixed the

cells following 24 or 72 h of treatment and then used the 4i pro-

cedure to measure the abundance or phosphorylation state of

AP-1 transcription factors as wells as MITF and NGFR protein

levels (Figures 4A, S3, S4, and S5A). We also measured p-

ERKT202/Y204 levels to quantify changes in MAPK signaling as

described in the following section (Figure S5B).

To assess drug-induced changes in differentiation state for

each cell line, we computed the relative enrichment of dediffer-

entiated cells by normalizing the NGFR protein levels to MITF

protein levels at baseline (DMSO), then tracking its changes

following MAPK inhibitor treatments. Interestingly, treatment

with BRAF/MEK inhibitors induced dedifferentiation in some

cell lines (Figure 4B, left panels) but enhanced differentiation in

a few others (Figure 4B, right panels). To identify possible asso-

ciations between AP-1 factors and drug-induced changes in dif-

ferentiation state, we built a PLSR model to associate DMSO-

normalized changes in the expression levels of each of the

AP-1 factors to DMSO-normalized changes in the enrichment

of dedifferentiated (or abatement of differentiated) cells for

each of the MAPK inhibitor treatment conditions. The PLSR

model achieved its maximum prediction accuracy by three com-

ponents (Figure 5A). We thus computed the VIP scores using the

first three PLS components to determine the overall contribution

of each AP-1 modification to drug-induced changes in mela-

noma differentiation state (Figure 5B). VIP analysis revealed

changes in multiple AP-1 factors from the JUN and ATF subfam-

ily that were correlated with changes in differentiation state.

Among these factors, cJUN and p-cJUN changes (at 24 and

72 h) were consistently the strongest predictors of both drug-

induced dedifferentiation and differentiation among the tested

cell lines (Figure 5C). In agreement with population-level data,

single-cell analysis revealed increases in cJUN and p-cJUN

levels in dedifferentiating melanoma cells (Figure 5D, top row)

and reduction of cJUN and p-cJUN levels in differentiating mel-

anoma cells followingMAPK inhibitor treatments (Figure 5D, bot-

tom row).

MAPK inhibitor-induced changes in the AP-1 state
reveal efficiency of ERK pathway inhibition across mel-
anoma cell lines
In addition to drug-induced changes in differentiation state,

incomplete inhibition of the ERK pathway (or its reactivation

following a transient period of ERK inhibition) is known as a com-

mon mechanism of resistance to BRAF inhibitors (Lito et al.,

2012). Importantly, when ERK activity rebounds as early as a

few hours after drug treatment, a small residual ERK activity (at

the cell population level) may be sufficient to help cells escape

the effect of BRAF inhibition (Gerosa et al., 2020; Khaliq et al.,

2021). The combination of BRAF inhibitors with MEK inhibitors

has been proposed as a strategy to overcome the ERK pathway

rebound following BRAF inhibition alone (Lito et al., 2012). In

agreement with this idea, all 18 melanoma cell lines treated

with the combination of vemurafenib and trametinib showed

significantly lower levels of residual p-ERK at 24 h in comparison

with their responses to vemurafenib treatment for the same dura-

tion (Figures 6A and 6B). Drug combination also significantly
Cell Reports 40, 111147, August 2, 2022 7
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Figure 4. MAPK inhibitor-induced changes in AP-1 protein levels, p-ERK and differentiation state markers

(A) Population-averaged measurements of 17 AP-1 proteins, differentiation state markers MITF and NGFR, and p-ERKT202/Y204 levels acquired across 18 BRAF-

mutant melanoma cell lines. Protein data shown for each condition represent the log-transformedmean values for two replicates, followed by Z scoring across all

cell lines and treatment conditions, including DMSO, vemurafenib alone (at 0.316 mM), or the combination of vemurafenib (at 0.316 mM) and trametinib (at

0.0316 mM) for 24 or 72 h.

(B) MAPK inhibitor-induced changes in differentiation state, as evaluated by log-transformed ratio of NGFR toMITF protein levels across cell lines at 72 h. Central

marks on the data points indicate the mean between two replicates. p values represent one-way ANOVA test for differences across treatment conditions in each

cell line.
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reduced p-ERK rebound in comparison with vemurafenib treat-

ment at 72 h. However, the extent of this effect was variable

among different cell lines (Figures 6A and 6B). We thus asked

which, if any, of the AP-1 factors might capture the observed dif-

ferences in the efficiency of ERK pathway inhibition among

different cell lines.

To answer this question, we used partial correlation analysis to

assess pairwise relationships between p-ERK and AP-1 levels

across 18 cell lines treated with either vemurafenib (for either

24 or 72 h) or the combination of vemurafenib and trametinib

(for 72 h), while correcting for baseline (drug-naive) variations

in the AP-1 protein levels (Figure 6C). This analysis identified p-

FRA1 as the most consistent predictor of the efficiency of ERK

pathway inhibition among all cell lines (Figures 6C and 6D). In

agreement with population-level correlation analysis, single-

cell analysis also revealed a significant covariance between p-

ERK and p-FRA1 levels (Figure 6E). Such strong connection be-

tween p-FRA1 and p-ERK in drug-treated cells is consistent with

FRA1 serving as a tightly coupled sensor of ERK activity (Gillies

et al., 2017). Interestingly, however, FRA1 or p-FRA1 levels did

not correlate with hyperactivated p-ERK levels when we per-

formed pairwise correlation analysis on drug-naive BRAF-

mutant cells. Instead, we found drug-naive p-ERK levels to be

positively correlated with cFOS, p-cFOS, and ATF4 and nega-

tively correlated with FRA2 and cJUN (Figure S6). All these
8 Cell Reports 40, 111147, August 2, 2022
AP-1 factors were predictors of melanoma differentiation state.

These observations are consistent with previous reports linking

up-regulation of MITF to elevated ERK activity in BRAF-mutant

melanoma cells (Wellbrock et al., 2008). In addition, they suggest

that changes in ERK signaling following pharmacological inhibi-

tion of the pathway may lead to rewiring of AP-1 signaling.

Perturbation of AP-1 state by siRNA confirms its role in
driving differentiation state heterogeneity
We hypothesized that if the AP-1 state drives melanoma differ-

entiation programs, then inducing perturbations in the AP-1 state

will shift differentiation states in predictable ways. To test this hy-

pothesis, we perturbed AP-1 factors in COLO858 melanoma

cells by using pools of previously validated small interfering

RNAs (siRNAs) to knock down the expression of five AP-1 genes

(FOS, FOSL1, FOSL2, JUN, and JUND), either individually or in

pairwise combinations. Unfortunately, we were unable to

achieve significant depletion of FRA1 in COLO858 cells. Hence,

we focused on the analysis of the data following individual, or

pairwise combinations of siRNAs targeting FOS, FOSL2, JUN,

and JUND. COLO858 represents a heterogeneous population

composed of both melanocytic (SOX10High/MITFHigh) and undif-

ferentiated (SOX10Low/MITFLow) cells, thereby allowing us to

track changes in the expression of differentiation state markers

after AP-1 perturbations. Following 96 h of AP-1 gene
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Figure 5. MAPK inhibitor-induced changes in cJUN and p-cJUN levels correlate with drug-induced changes in differentiation states

(A) Performance of the PLSR model in predicting drug-induced changes in differentiation states on the basis of drug-induced AP-1 modifications. Model perfor-

mance was evaluated by computing the fraction of variance in DMSO-normalized differentiation state changes at 72 h explained (R2) or predicted on the basis of

leave-one-out cross validation (Q2) with increasing number of PLS components.

(B) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations of DMSO-normalized AP-1 modifications at 24 and 72 h, and their

importance for predicting the DMSO-normalized differentiation state changes at 72 h. The sign of the VIP score shows whether the indicated variable

(DMSO-normalized AP-1 protein levels at 24 or 72 h) positively or negatively contributes to the response (DMSO-normalized change in differentiation state).

(C) Pearson’s correlation between DMSO-normalized changes in differentiation state and DMSO-normalized cJUN or p-cJUN levels at indicated time points and

drug treatment conditions. Each data point represents population-averaged measurements across two replicates for each cell line.

(D) Analysis of covariance between the levels of p-cJUN or c-JUN and drug-induced changes in differentiation state (as evaluated by NGFR-MITF ratio) at the

single-cell level across indicated treatment conditions. For each cell line, Pearson’s correlation coefficient was calculated on the basis of 300 randomly sampled

cells (100 cells from each treatment condition).
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knockdown in COLO858 cells, we measured (in three replicates)

protein levels of differentiation markers MITF, SOX10, and AP-1

factors cFOS, FRA1, FRA2, cJUN, and JUND using 4i

(Figures 7A, 7B, and S7).

Interestingly, siRNA-mediated knockdowns not only reduced

the levels of AP-1 proteins targeted by their corresponding

siRNAs but also, in some cases, led to changes in the expression

of other AP-1 proteins (Figures 7A and S7). For example, FOSL2

knockdown substantially reduced FRA2 levels but also induced

the expression of FRA1 compared with cells treated with non-

targeting (control) siRNA. JUND knockdown reduced JUND

levels but also led to an increase in cFOS and cJUN levels. These

observations agree with previous findings (Lopez-Bergami et al.,

2010) suggesting that the state of AP-1 network is controlled by

interactions among different AP-1 factors. Combinations of

siRNAs against pairs of AP-1 genes may help reveal AP-1
modifications that are phenotypically consequential. To identify

such interactions, we quantified the levels of SOX10 and MITF

proteins across all knockdown conditions in COLO858 cells

and examined them along a two-dimensional plot (Figures 7A

and 7B). We found that knocking down FOSL2 and JUN in com-

bination significantly increased the expression of SOX10

(Figures 7A and 7B). This behavior is consistent with our earlier

finding regarding the role of FRA2 and cJUN in regulation of

the undifferentiated (SOX10Low) state. On the other hand, knock-

ing down FOS and JUND in combination significantly reduced

the expression of both MITF and SOX10 (Figures 7A and 7B),

which is consistent with our finding regarding their role in driving

the melanocytic lineage.

To further validate the impact of depletion of AP-1 proteins on

the expression of melanoma differentiation state markers, we

performed selected siRNA knockdown experiments in two
Cell Reports 40, 111147, August 2, 2022 9
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Figure 6. MAPK inhibitor-induced changes in p-FRA1 levels correlate with efficiency of ERK pathway inhibition across cell lines

(A) Population-averaged measurements of p-ERKT202/Y204 levels in 18 cell lines following indicated MAPK inhibitor treatments for 24 or 72 h. Bar height indicates

mean values between two replicates shown as black dots. p values show the statistical significance of the impact of MAPK inhibitor treatment (blue) or time (red)

on p-ERK levels on the basis of two-way ANOVA.

(B) Statistical comparison (using two-sided paired t test) of p-ERK levels across 18 cell lines following indicated MAPK inhibitor treatments for 24 or 72 h. Each

data point represents population mean of p-ERK levels between two replicates for each cell line.

(C) Pairwise partial correlations (evaluated across 18 cell lines) between each of the 17 AP-1 measurements and p-ERK levels following 24 or 72 h of treatment

with MAPK inhibitors, while correcting for the corresponding baseline (drug-naive) AP-1 levels in the same cell lines.

(D) Pearson’s correlation (top row) and partial correlation (bottom row) between p-ERK and p-FRA1 levels following MAPK inhibitor treatments at indicated time

points. Each data point represents population mean of p-ERK levels between two replicates for each cell line.

(E) Analysis of covariance between p-FRA1 and p-ERK levels across indicated MAPK inhibitor treatment conditions at the single-cell level. For each cell line,

Pearson’s correlation coefficient was calculated on the basis of 400 randomly sampled cells (100 cells from each treatment condition).
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Figure 7. Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state heterogeneity

(A) The effect of siRNA-mediated depletion (for 96 h) of AP-1 proteins cFOS, FRA2, cJUN, and JUND, either individually or in pairwise combinations, on protein

levels of cFOS, FRA1, FRA2, cJUN, and JUND and differentiation state markers MITF and SOX10 in COLO858 cells. Protein data shown for each condition repre-

sent the log-transformedmean values for three and six replicates across AP-1 knockdown conditions and the control, respectively. The central mark on the plots

indicates the median across replicates. Statistical comparisons were performed using two-sided unpaired t tests.

(B) Two-dimensional projection of MITF and SOX10 levels (in log scale) following 96 h of siRNA knockdown in COLO858 cells.

(C and D) Statistical comparison (using two-sided unpaired t test) of selected AP-1 proteins and SOX10 levels across indicated siRNA knockdown conditions in

C32 (C) and LOXIMVI (D) cells. Protein data shown for each condition represent the log-transformedmean values for three and six replicates across AP-1 knock-

down conditions and the control, respectively. The central mark on the plots indicates the median across replicates.
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additional cell lines, including C32 and LOXIMVI, which consti-

tuted relatively homogeneous populations of melanocytic and

undifferentiated cells, respectively (Figure 1C). First, we exposed

C32 cells to siRNAs targeting FOS and JUND, individually or in

combination, for 96 h (Figure 7C). In agreement with results in

COLO858 cells, the combination of FOS and JUND knockdown

significantly reduced SOX10 andMITF protein levels in C32 cells

(Figure 7C). Next, we exposed undifferentiated LOXIMVI cells to

siRNAs targeting FOSL2 and JUN. We found that both siRNAs

individually increased the expression levels of SOX10 (Figure 7

). However, in contrast to our observation in COLO858 cells,

the impact of combined FOSL2 and JUN siRNAs (for 96 h) in

highly undifferentiated LOXIMVI cells was not significant.
Overall, despite some differences among the impact of individual

or combined siRNA treatments, the knockdown experiments

across three cell lines (taken with all the data presented

throughout this study) confirmed our findings regarding a key

role for a balance among FOS, JUND, JUN, and FOSL2 in driving

the differentiation program in melanoma cells.

DISCUSSION

The hyperactivation of MAPK signaling in BRAF-mutant mela-

nomas is linked to their overall sensitivity to MAPK inhibition.

The differentiation state heterogeneity, however, leads to vari-

ability in MAPK inhibitor responses both across genetically
Cell Reports 40, 111147, August 2, 2022 11
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diverse tumors and among genetically homogeneous popula-

tions of cells. Understanding the origins of such heterogeneity

is key to identifying effective strategies to overcome fractional

responses that undermine the potential of MAPK-targeted ther-

apies. It requires a detailed knowledge of the mechanisms and

molecular players that link cellular plasticity and transcriptional

regulation of differentiation state to therapy-induced changes

in MAPK signaling. To begin to fill this gap in our knowledge,

we used a multidimensional approach at single-cell resolution

to systematically investigate the AP-1 transcription factor contri-

butions to heterogeneity in BRAF-mutant melanoma cells. We

focus on the AP-1 factors because they serve as downstream

targets of MAP kinases, and previous work has connected

several AP-1 proteins to MAPK inhibitor resistance, differentia-

tion state heterogeneity, and therapy-induced changes in differ-

entiation state in melanomas.

Our data showed that a tightly regulated balance among a few

key AP-1 family members and their activities strongly predict

previously characterized heterogeneities in melanoma differenti-

ation states. Specifically, cFOS and p-cFOS were associated

with melanocytic and transitory cells, whereas FRA1, p-FRA1,

FRA2, and cJUN and p-cJUN correlated with less differentiated

cell states. The systematic nature of the study across many

genetically different melanomas suggests that these associa-

tions are a general feature of melanomas and likely not unique

to a particular cell line or linked to a certain genetic context.

Furthermore, we showed that perturbing the molecular balance

of AP-1 factors in melanoma cells by siRNAs that deplete spe-

cific AP-1 proteins, either alone or in combination, or by treat-

ments with MAPK inhibitors can induce differentiation state

switching and heterogeneity in a controllable manner. Together,

these findings provide insights into AP-1 function, its role in cell

state plasticity, and its potential dysregulation in melanoma,

while opening avenues for interrogating the AP-1 behavior in

the context of adaptive response to MAPK inhibitors. In theory,

gaining the ability to target certain AP-1 states could force cells

to remain in a more drug-sensitive state, thereby increasing the

fractional killing of melanoma cells in response to MAPK

inhibition.

Future studies may leverage the findings from this study to

further elucidate transcriptional mechanisms that contribute to

MAPK-targeted therapy escape in melanomas at a single-cell

level. Furthermore, uncovering how the information encoded in

the MAPK signaling dynamics is transduced through its down-

stream AP-1 network will be key for explaining the observed vari-

ability in tumor cell responses to MAPK inhibitors. For example,

AP-1 family members FOS and FOSL1 are early ERK target

genes whose regulation by ERK activity constitutes feedforward

motifs that enable them to decode the dynamics of ERK

signaling (Davies et al., 2020). Differentiation state-specific vari-

ations in the baseline expression and activities of these AP-1

genes, as we observed in this study, could introduce variability

in the transduction of MAPK signals, generating heterogeneity

in cell fate underMAPKperturbations. Future studies that link dy-

namic fluctuations in ERK activity and otherMAP kinases to AP-1

behavior could offer important insights into mechanisms of het-

erogeneity in drug response and adaptive resistance to MAPK

inhibitors.
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Consistent with our findings regarding the role of AP-1 state

changes in determining the differentiation state plasticity, recent

studies have highlighted a key role for AP-1 factors in chromatin

organization and enhancer accessibility. AP-1 proteins have

been reported to facilitate new cell fate transitions, such as

cellular senescence or differentiation, by establishing the

enhancer landscape and granting long-term chromatin access

to other transcription factors, thereby allowing the timely execu-

tion of cell state-specific transcriptional programs (Madrigal and

Alasoo, 2018; Martı́nez-Zamudio et al., 2020; Phanstiel et al.,

2017; Vierbuchen et al., 2017). Understanding which AP-1 fac-

tors and cofactors work to keep poised enhancers accessible

and which function to shift enhancers from a poised to active

state could connect transcription to (de)differentiation and

genome reorganization following inhibition of MAPK signaling

and its adaptive reactivation. Furthermore, AP-1 proteins like

other bZIP proteins must form dimers before they could bind

to the AP-1 motif site. For example, while FOS family members

bind DNA as obligate heterodimers with members of the JUN

family, JUN family members can bind the AP-1 motif site as

both homodimers and heterodimers with FOS family members.

Future studies, therefore, should also determine the extent to

which the combinatorial activity of AP-1 family members is influ-

enced by distinct patterns of dimerization among these tran-

scription factors.

Limitations of the study
Although quantitative, immunofluorescence-based measure-

ments of protein levels and phenotypes and the use of siRNAs

to knock down the expression of genes have proved immensely

powerful for the study of biology, all techniques have limitations.

For example, the quality of quantitative information retrieved

from immunofluorescence images depends largely on the quality

of segmentation of the cell features of interest. Although great

effort was made to optimize the image segmentation procedure

and to ensure that the segmentation captured the desired fea-

tures, it is infeasible to visually inspect every cell for appropriate

segmentation. Second, in the current study we assume that

AP-1 protein levels in the nucleus correspond to or correlate

with transcriptional activity. Although this assumption is likely

true in many circumstances, it is impossible to definitively prove

that this is the case for each of the many factors we measure in

this study. Furthermore, when performing many sequential

rounds of 4i staining and images, cells are gradually lost over

the course of sample washing and re-probing. Although we as-

sume that cell loss occurs equivalently for all differentiation

states of the cell, we do not explicitly test this assumption

here. However, if this assumption were false, it would be unclear

whether the conclusions reached in the paper would change, as

our findings are validated using a variety of complementary

methods and independent datasets.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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Antibodies

c-Fos (9F6) Rabbit mAb Cell Signaling Technologies Cat# 2250, RRID: AB_2247211

Phospho-c-Fos (Ser32) (D82C12) XP� Rabbit mAb Cell Signaling Technologies Cat# 5348, RRID: AB_10557109

Recombinant Anti-FRA1 [EP4711] Rabbit mAb Abcam Cat# ab124722, RRID: AB_11001005

Phospho-FRA1 (Ser265) (D22B1) Rabbit mAb Cell Signaling Technologies Cat# 5841, RRID: AB_10835210

Fra2 (D2F1E) Rabbit mAb Cell Signaling Technologies Cat# 19967, RRID: AB_2722526

c-Jun (60A8) Rabbit mAb Cell Signaling Technologies Cat# 9165, RRID: AB_2130165

Phospho-c-Jun (Ser73) (D47G9) XP� Rabbit mAb Cell Signaling Technologies Cat# 3270, RRID: AB_2129575

JunD (D17G2) Rabbit mAb Cell Signaling Technologies Cat# 5000, RRID: AB_10949318

JunB (C37F9) Rabbit mAb Cell Signaling Technologies Cat# 3753, RRID: AB_2130002

Phospho Anti-ATF1 (S63) Rabbit mAb Abcam Cat# ab76085, RRID: AB_1523174

Recombinant Anti-ATF2 [E243] Abcam Cat# ab32160, RRID: AB_2243137

Recombinant Anti-ATF2 (phospho T71) [E268] Abcam Cat# ab32019, RRID: AB_725567

Anti-ATF3 Abcam Cat# ab87213, RRID: AB_1951498

Recombinant Anti-ATF4 antibody [EPR18111] Abcam Cat# ab184909, RRID: AB_2819059

Anti-ATF4 (phospho S245) Abcam Cat# ab28830, RRID: AB_725570

Recombinant Anti-ATF5 [EPR18286] Abcam Cat# ab184923, RRID: AB_2800462

Anti-ATF6 antibody [1-7] Abcam Cat# ab122897, RRID: AB_10899171

Phospho pErk1/2 (T202/Y204) Rabbit mAb Cell Signaling Technologies Cat# 4370, RRID: AB_2315112

Human MITF Antibody R&D Systems Cat# AF5769, RRID: AB_2235141

Anti-SOX10 antibody [SOX10/991] Abcam Cat# ab212843, RRID: AB_2889150

p75NTR Rabbit mAb Cell Signaling Technologies Cat# 8238, RRID: AB_10839265

Human Axl Antibody R&D Systems Cat# AF154, RRID: AB_354852

Goat anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa FluorTM 647

Invitrogen Cat# A-21245, RRID: AB_141775

Goat anti-Mouse IgG (H+L)

Cross-Adsorbed Secondary Antibody,

Alexa FluorTM 568

Invitrogen Cat# A-11004, RRID: AB_2534072

Chemicals, peptides, and recombinant proteins

Vemurafenib Selleck Chemicals Cat# S1267

Trametinib Selleck Chemicals Cat# S2673

DharmaFECT 2 Horizon Discovery Cat# T-2002-01

MycoAlertTM PLUS Mycoplasma Detection Kit Lonza Cat# LT07-701

DMEM with 4.5 g/L glucose Corning Cat# 10-013-CV

Fetal bovine serum Gibco Cat# 26140079

EMEM Corning Cat# 10-009-CV

DMEM/F12 Gibco Cat# 11330-032

Sodium pyruvate Gibco Cat# 11360070

RPMI 1640 Corning Cat# 10-040-CV

Plasmocin Prophylactic Invivogen Cat# NC9886956

L-Glycine Sigma Cat# 50046

Urea Sigma Cat# U5128

Guanidinium chloride Sigma Cat# 3272

TCEP-HCl Sigma Cat# C4706
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Intercept blocking buffer LiCor Cat# 927-70001

Maleimide Sigma Cat# 129585

N-Acetyl-Cysteine Sigma Cat# A7250

Hoechst 33342 Invitrogen Cat# H3570

CellMask Green ThermoFisher Cat# C37608

Deposited data

Single cell 4i protein measurements

(Data S1, S4, and S5)

This paper N/A

Bulk gene expression data

for 53 melanoma cell lines

(Tsoi et al., 2018) GEO Accession: GSE80829

Bulk gene expression data for

32 melanoma cell lines from the

Cancer Cell Line Encyclopedia (CCLE).

(Ghandi et al., 2019) https://sites.broadinstitute.org/ccle

SCENIC regulons of 10 melanoma cell lines (Wouters et al., 2020) http://scope.aertslab.org/#/

Wouters_Human_Melanoma

Single cell gene expression data

of patient-derived melanoma tumors

(Jerby-Arnon et al., 2018;

Tirosh et al., 2016)

GEO Accession: GSE72056; GSE115978

Single cell signature enrichment and

regulon activity data of melanoma

cell lines and patient-derived tumors

(Data S2 and S3)

This paper N/A

AP-1 siRNA knockdown effects in

melanoma cell lines measured by 4i

(Data S6)

This paper N/A

Experimental models: Cell lines

Human: COLO858, Melanoma Cell Line MGH Cancer Center,

primary source ECACC

Cat# 93052613, RRID: CVCL_2005

Human: RVH421, Melanoma Cell Line MGH Cancer Center,

primary source DSMZ

Cat# ACC 127, RRID: CVCL_1672

Human: A375, Melanoma Cell Line ATCC Cat# CRL-1619, RRID: CVCL_0132

Human: A375 NRAS(Q61K),

Melanoma Cell Line

ATCC Cat# CRL-1619IG-2, RRID: CVCL_JF22

Human: C32, Melanoma Cell Line MGH Cancer Center,

primary source ATCC

Cat# CRL-1585, RRID: CVCL_5246

Human: A2058, Melanoma Cell Line ATCC Cat# CRL-11147, RRID: CVCL_1059

Human: WM115, Melanoma Cell Line MGH Cancer Center,

primary source ATCC

Cat# CRL-1619, RRID: CVCL_0040

Human: SKMEL28, Melanoma Cell Line MGH Cancer Center,

primary source ATCC

Cat# HTB-72, RRID: CVCL_0526

Human: HS294T, Melanoma Cell Line ATCC Cat# HTB-140, RRID: CVCL_0331

Human: WM1552C, Melanoma Cell Line MGH Cancer Center,

primary source ATCC

Cat# CRL-2808, RRID: CVCL_6472

Human: SKMEL5, Melanoma Cell Line ATCC Cat# HTB-70, RRID: CVCL_0527

Human: A101D, Melanoma Cell Line ATCC Cat# CRL-7898, RRID: CVCL_1057

Human: IGR39, Melanoma Cell Line DSMZ Cat# ACC 239, RRID: CVCL_2076

Human: LOXIMVI, Melanoma Cell Line MGH Cancer Center,

primary source Sigma

Cat# SCC201, RRID: CVCL_1381

Human: MMACSF, Melanoma Cell Line MGH Cancer Center,

primary source RIKEN

BioResource Center

Cat# RCB1200, RRID: CVCL_1420

Human: WM902B, Melanoma Cell Line Wistar Cat# WM902B-01-0001, RRID: CVCL_6807

Human: WM2664, Melanoma Cell Line Wistar Cat# WM266-4-01-0001, RRID: CVCL_2765

(Continued on next page)
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Human: UACC62, Melanoma Cell Line Broad Institute,

primary source N/A

RRID: CVCL_1780

Human: SKMEL19, Melanoma Cell Line Broad Institute,

primary source N/A

RRID: CVCL_6025

Oligonucleotides

See Table S1 for oligonucleotide sequences. This paper N/A

Software and algorithms

Source code for analyses This paper https://github.com/fallahi-sichani-lab/

AP1-networkPlasticityMelanoma

CellProfiler (3.1.9) (McQuin et al., 2018) https://cellprofiler.org/

ImageJ (2.3.0) Public Domain Software https://imagej.nih.gov/ij/index.html

MATLAB (2020b) Mathworks https://matlab.mathworks.com/

R (4.0.4) The Comprehensive R

Archive Network (CRAN)

https://www.r-project.org/

stats R package (4.1.2) The R Project https://stat.ethz.ch/R-manual/R-devel/

library/stats/html/00Index.html

AUCell R package (1.16.0) (Aibar et al., 2017) https://bioconductor.org/packages/release/

bioc/vignettes/AUCell/inst/doc/AUCell.html

umap R package (0.2.7.0) CRAN https://cran.r-project.org/web/packages/umap/

SCopeLoomR R package (0.13.0) Aerts Lab https://github.com/aertslab/SCopeLoomR

Python (3.9.2) N/A https://www.python.org/downloads/

Scanpy (1.7.1) (Wolf et al., 2018) https://github.com/scverse/scanpy

pySCENIC (0.11.0) (Van de Sande et al., 2020) https://github.com/aertslab/SCENICprotocol

Nextflow (20.10.0) Seqera Labs https://www.nextflow.io/

Scikit-learn Library (0.24.1) (Pedregosa et al., 2018) https://scikit-learn.org/stable/

SHAP (Lundberg and Lee, 2017) https://github.com/slundberg/shap

Other

96-well plates Corning Cat# 3904

Differentiation signature gene sets (Tsoi et al., 2018) N/A

Proliferative and Invasive phenotype gene sets (Hoek et al., 2006) http://www.jurmo.ch/work_97.php

List of bZIP transcription factor genes (Vinson et al., 2002) https://github.com/fallahi-sichani-lab/

AP1-networkPlasticityMelanoma

List of transcription factor genes (Van de Sande et al., 2020) https://raw.githubusercontent.com/aertslab/

pySCENIC/master/resources/hs_hgnc_tfs.txt

Nextflow pipeline adapted for

running SCENIC iteratively

(Wouters et al., 2020) https://github.com/aertslab/

singlecellRNA_melanoma_paper

R scripts adapted for extracting and

filtering regulons from multiple SCENIC runs

(Wouters et al., 2020) https://github.com/aertslab/

singlecellRNA_melanoma_paper

Homo sapiens whole-genome motif

ranking databases for SCENIC

(motif collection v9)

Aerts Lab https://resources.aertslab.org/cistarget/

Motif annotation file for SCENIC

(motif collection v9)

Aerts Lab https://resources.aertslab.org/cistarget/
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mohammad Fallahi-Si-

chani (fallahi@virginia.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d Raw immunofluorescence microscopy data reported in this paper will be shared by the lead contact upon request. All quan-

tified microscopy data are included in Data S1, S4, S5, S6. This paper analyzes existing, publicly available data. These acces-

sion numbers for the datasets are listed in the key resources table.

d The original codes for data analysis performed in this paper are publicly available at GitHub: https://github.com/

fallahi-sichani-lab/AP1-networkPlasticityMelanoma (https://doi.org/10.5281/zenodo.6741989).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

BRAF-mutant melanoma cell lines used in this study include: COLO858, RVH421, A375, A375(NRASQ61K), C32, A2058, WM115,

SKMEL28, HS294T, WM1552C, SKMEL5, A101D, IGR39, LOXIMV1, MMACSF, WM902B, WM2664, UACC62 and SKMEL19. All

cell lines have been subjected to re-confirmation by short tandem repeat (STR) profiling by ATCC and mycoplasma testing by

MycoAlertTM PLUS Mycoplasma Detection Kit. A375, A375(NRASQ61K), A2058, HS294T, A101D, and IGR39 cells were grown in

DMEMwith 4.5 g/L glucose supplemented with 5% fetal bovine serum (FBS). SKMEL5 andWM2664 cells were grown in EMEM sup-

plemented with 5% FBS. C32, MMACSF, SKMEL28, and WM115 cells were grown in DMEM/F12 supplemented with 1% sodium

pyruvate and 5% FBS. COLO858, LOXIMVI, RVH421, SKMEL19, UACC62, WM1552C, and WM902B cells were grown in RPMI

1640 supplemented with 1% sodium pyruvate and 5% FBS. Cells were grown at 37�C with 5% CO2 in a humidified chamber.

100 U/mL Penicillin-Streptomycin (10,000 U/mL), and 0.5 mg/mL Plasmocin Prophylactic were present in all cell cultures.

METHOD DETAILS

Drug treatments
Cells were seeded in 200 mL/well in Corning 96-well plates. Vemurafenib, Trametinib or vehicle (DMSO) was added at indicated con-

centrations using the Tecan D300e Digital Dispenser 24 h after cell seeding. Cells were fixed at the indicated timepoints with 4%

paraformaldehyde in phosphate-buffered saline (PBS) for 30 min at room temperature. All time course experiments with drug treat-

ment were initiated at the same time and then stopped sequentially at the indicated timepoints (24 h and 72 h). The DMSO experi-

ments were stopped at 24 h to avoid artifacts in signaling measurements that may arise due to cell confluency and the exhaustion of

growth media.

AP-1 gene knockdown by siRNA
COLO858 cells were seeded in 100 mL of antibiotic-free growth media (RPMI supplemented with 5% FBS and 1 mM Sodium Pyru-

vate) in 96-well plates at a density of 2000 cells/well. After 24 h of incubation, cells were transfected using 0.05 mL of DharmaFECT 2

reagent per well with indicated DharmaconON-TARGETplus AP-1 siRNAs (at 25 nM) individually or in pairwise combinations. Knock-

downs targeting a single AP-1 gene were supplemented with non-targeting siRNA to normalize the final siRNA concentration (to

50 nM siRNA) across all siRNA conditions. All siRNAs were tested for knockdown efficiency and specificity by measuring protein

levels of each factor and members of the factor subfamily (e.g., measuring single-cell protein levels of cFOS, FRA1, and FRA2, 24

h following FOS knockdown). Only siRNA species that showed knockdown of the protein target with minimal off-target knockdown

effects were used. Cells were fixed 96 h after transfection with 4% paraformaldehyde in PBS for 30 min at room temperature. The

siRNA sequences used for each condition are included in Table S1.

Iterative indirect immunofluorescence imaging (4i)
4i images were obtained using a previously described protocol (Gut et al., 2018) with minor modifications. After media aspiration,

cells in 96-well plates were fixedwith 4%paraformaldehyde in PBS for 30min at room temperature. All washeswere performed using

a BioTek EL406 Washer Dispenser and consisted of 4 wash cycles of 200 mL with the indicated buffer while retaining approximately

20 mL liquid in eachwell during the aspiration step to limit cell loss. Cells were washedwith PBS then permeabilized for 15min at room

temperature with 100 mL 0.5% Triton X-100 in PBS. Cells were washed with PBS followed byMilli-Q deionized water. Cells were next

treated 3 times total for 12 min each instance with 40 mL elution buffer which consists of 0.5M L-Glycine, 3M Urea, 3 M Guanidinium

chloride, and 70 mM TCEP-HCl at pH of 2.5. Cells were washed with PBS as above. Samples were then blocked for 1 h at room tem-

perature with 50 mL blocking buffer which consists of PBS-based Intercept buffer supplemented with 150 mM maleimide. Blocking

buffer was prepared immediately prior to adding to the samples for each round. Following a PBS wash, samples were incubated

overnight at 4�C with 40 mL primary antibody diluted in Intercept buffer. After overnight incubation, cells were washed with PBS

then incubated for 1 h at room temperature in 40 mL secondary antibody solution consisting of the appropriate species-specific Alexa

Fluor-conjugated antibodies diluted 1:2000 in Intercept buffer. Cells were then washed with PBS and incubated with 50 mL Hoechst

33342 diluted 1:20,000 in PBS. For the first round of imaging, cells were stained with a mixture of Hoechst and CellMask Green for

30 min at room temperature according to the manufacturer’s instructions. Next, cells were washed with Milli-Q water and 80 mL im-

aging buffer consisting of 700 mM N-Acetyl-Cysteine at pH of 7.4. Images were obtained using Operetta CLS high content imaging
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system (Perkin Elmer) using a 103 air objective lens. Following imaging, samples were washed with Milli-Q water after which anti-

bodies were eluted with 3 successive 12-min incubations at room temperature with elution buffer. Cells were washed with PBS fol-

lowed by Milli-Q water. Next, 50 mL imaging buffer was added to each well and samples were imaged as above to assess removal of

fluorescent signal. Cells were then washed with PBS and all steps were repeated starting at the blocking step for each round of 4i. In

instances where the time between 4i rounds exceeded 3 days, following elution, the plates were fixed for 10min at room temperature

with 4% paraformaldehyde in PBS. In these cases, to resume staining, cells were then washed with PBS followed by Milli-Q water

and treated with elution buffer lacking TCEP-HCl three times for 10min, totaling 30min. Afterwards, cells were washed with PBS and

the next round of 4i commenced.

Image analysis
Images were background subtracted using the rolling ball subtraction algorithm in ImageJ (2.3.0). Background-subtracted images

from each round of 4i were aligned using Hoechst nuclei staining with CellProfiler (3.1.9) (McQuin et al., 2018) using the normalized

cross correlationmethodwithin the Alignmodule. Nuclei were segmented from the aligned images using theMinimumCross Entropy

thresholding method within the IdentifyPrimaryObjects module in CellProfiler. The Threshold smoothing scale and correction factor

were 2.4 and 1, respectively with lower and upper threshold bounds of 0 and 1. Cell segmentation was then performed using

CellMask Green staining to propagate objects from the nuclei. This was done using the Propagation method within the

IdentifySecondaryObjects module. The Minimum cross entropy thresholding method was used with a smoothing scale of 0 and

correction factor of 1, the lower and upper threshold bound values set to 0 and 1, and a regularization factor of 0.05. The

TrackObjects module was used to multiplex data from individual rounds of 4i. Within TrackObjects, the Follow Neighbors method

was usedwith themaximumpixel distance of 50 and average cell diameter of 15. Comma-separated text files containing quantitative

single-cell measurements of tracked objects from CellProfiler were organized using Matlab. Only objects present in every round of

imaging were included in the analysis. Additional data analysis was performed using Matlab, R, and Python.

Classifying melanoma differentiation states
To classify the differentiation state of cells based on image-based protein measurements, we generated histograms of single-cell

data on each of the previously validated melanoma differentiation state markers (MITF, SOX10, NGFR and AXL) (Khaliq et al.,

2021; Tsoi et al., 2018). For each protein (X), we identified an appropriate binary gate, based on which individual melanoma cells

were divided into two groups of XHigh and XLow cells. The gating thresholds used on background-subtracted image data for each

protein included: log(MITF) = 7.37, log(SOX10) = 6.82, log(NGFR) = 4.61, and log(AXL) = 5.60. We then used these classifications

to determine the differentiation subtype of each individual melanoma cell as follows: melanocytic (M): MITFHigh/SOX10High/

NGFRLow/AXLLow; transitory (T): MITFHigh/SOX10High/NGFRHigh/AXLLow; neural crest-like (N): MITFLow/SOX10High/NGFRHigh/AXLHigh;

and undifferentiated (U): MITFLow/SOX10Low/NGFRLow/AXLHigh; the single-cell analysis and baseline differentiation state classifica-

tion were performed across 19 different melanoma cell lines representing a wide spectrum of differentiation states. To classify the

differentiation state of cells in gene knockdown perturbation assays, we used a similar approach to distinguishmelanocytic/transitory

(MITFHigh/SOX10High) cells from undifferentiated (MITFLow/SOX10Low) cells.

To classify melanoma differentiation states using bulk transcriptomic data, eachmelanoma cell line was assigned a series of seven

differentiation signature scores, defined as the average of z-scores for the expression levels of differentiation state signature genes

identified previously by Tsoi et al. (Tsoi et al., 2018). These differentiation signatures included the four main differentiation signatures,

i.e., melanocytic (M), transitory (T), neural crest-like (N) and undifferentiated (U), as well as mixtures of neighboring signatures,

including melanocytic-transitory (MT), transitory-neural crest-like (TN) and neural crest-like-undifferentiated states (NU).

To determine the differentiation state of individual cells for each of the 10 melanoma cell lines profiled by single-cell RNA

sequencing (Wouters et al., 2020), we used the R package AUCell (1.16.0) to quantify the enrichment of differentiation signature

genes (as defined by Tsoi et al. (Tsoi et al., 2018)) in individual cells. To minimize the impact of noise from single-cell data, we com-

bined two or three closely related signature gene sets as follows: M-MT gene set (combination of M and MT signature genes), MT-T-

TN gene set (combination of MT, T and TN signature genes), TN-N-NU gene set (combination of TN, N and NU signature genes) and

NU-U set (combination of NU and U genes). We then selected cells that represented individual differentiation states based on their

gated AUCell scores as follows: melanocytic cells: M-MTHigh/TN-N-NULow/NU-ULow; transitory cells: M-MTLow/MT-T-TNHigh/TN-N-

NULow/NU-ULow; neural crest-like cells: M-MTLow/MT-T-TNLow/TN-N-NUHigh/NU-ULow; undifferentiated cells: M-MTLow/MT-T-

TNLow/NU-UHigh. The differentiation state of individual melanoma cells derived from treatment-naı̈ve patient tumors profiled by Tirosh

et al. (Tirosh et al., 2016) and Jerby-Arnon et al. (Jerby-Arnon et al., 2018) were determined in the same way, except that only mel-

anocytic and undifferentiated cells were identified and analyzed. To determine the two-class ‘‘proliferative’’ and ‘‘invasive’’ pheno-

types of individual cells from the 10 cell lines and patient tumors, we used AUCell to quantify the enrichment of the two gene sets

defined by Hoek et al. (Hoek et al., 2006) for these two phenotypes at the single-cell level. We then selected cells that represent

each phenotype based on their gated AUCell, including proliferative cells as proliferativeHigh/invasiveLow and invasive cells as

proliferativeLow/invasiveHigh.
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Random forest classification
We used random forest classification to test the predictivity of AP-1 variations for melanoma differentiation state using single-cell

protein data collected by immunofluorescence imaging of 19 melanoma cell lines. We randomly sampled a total of 10,000 cells,

including 2,500 from each of the four differentiation states, in a way that they represented all 19 cell lines and 4 distinctive differen-

tiation states (melanocytic, transitory, neural crest-like and undifferentiated) as equally as possible. By random sampling, we aimed to

minimize potential biases associated with genotype differences among cell lines. We used the data from 80% of the sampled cells to

train a random forest classification model to predict the differentiation state of each individual cell. We then used the remaining 20%

of cells to independently validate model predictions. We also evaluated the performance of random forest models in predicting dif-

ferentiation states of independent cell lines using ‘‘leave-one-line-out’’ cross-validation. For this purpose, at each iteration, we

excluded cells from one cell line, trained a model using the remaining 18 cell lines, and then used the trained model to predict the

differentiation state of cells from the left-out cell line.

Model training, cross-validation and independent validation were all performed in Python (3.9.2) using the scikit-learn library

(0.24.1) (Pedregosa et al., 2018). To standardize the model input, protein levels of each AP-1 measurement were normalized across

cells to zero mean and unit variance (z-score scaled) using the StandardScaler() function. The random forest model was trained using

the RandomForestClassifier() function. In training the full model with all 17 AP-1 factors, all parameters were as defined in the default

settings, except the number of trees in the forest (n_estimators = 100) and maximum tree depth (max_depth = 14), which were sepa-

rately optimized through 5-fold Stratified Shuffle Split cross-validation on the training set, using the StratifiedShuffleSplit() function

with 10 times splitting iterations (n_splits = 10). In leave-one-line-out cross-validation, models built based on the top six AP-1 factors

were trained using n_estimators = 500, while other parameters were the same as in the full model.

The random forest model performance was evaluated based on accuracy and Area Under the Receiver Operating Characteristic

Curve (ROC AUC). Accuracy reports the fraction of correctly classified samples, i.e., true positives and true negatives, and it was

calculated using the accuracy_score() function. The ROC AUC scores were calculated using the roc_auc_score() function with the

One-vs-rest option (multi_class = ‘ovr’), which computes the AUC of each class against the rest. The ROC AUC scores consider

both the sensitivity (true positive rate) and specificity (true negative rate) of the model predictions.

To assess the importance of each AP-1 factor in explaining the predictions made by the random forest model for each individual

cell in the independent validation set, we used the SHapley Additive exPlanations (SHAP) package (Lundberg and Lee, 2017). SHAP

provides amodel agnosticmeasure of feature importance based on Shapley values, which assign importance of input features based

on their contribution to the model output prediction. Mathematically, given a specific prediction output by model fwith input x, Shap-

ley value for feature i, 4i(f,x), is the average of feature i’smarginal contributions across all possible orders of features being included

(Lundberg and Lee, 2017; Lundberg et al., 2018):

4iðf ; xÞ =
X

S4Sall\fig

jSj!ðM � jSj � 1Þ!
M!

½fxðSWfigÞ � fxðSÞ�

whereM is the total number of features, |S| denotes number of entries in set S and the term fxðSWfigÞ � fxðSÞ is the marginal contri-

bution of feature i. In SHAP, the marginal impact of a feature is defined as the change in the expected value of the model output f(x)

when that feature is observed versus unknown:

fxðSWfigÞ � fxðSÞ = E
�
fðxÞ�� xsWfig

� � E½fðxÞj xs�;
where xs is a subset of features with only set S is observed.

Partial least squares regression (PLSR) modeling
Weused PLSR analysis to test whether the relationships between the patterns of AP-1 gene expression andmelanoma differentiation

state were recapitulated at the transcriptional level. Bulk RNA sequencing data of 53melanoma cell lines used for PLSR analysis were

obtained from Tsoi et al. (Tsoi et al., 2018). We first log2-transformed the gene expression data (reported as FPKM) with an offset of 1.

Input vectors for PLSR analysis were then created by combining the z-scored expression data for fifteen AP-1 transcription factor

family genes, including FOS, FOSL1, FOSL2, FOSB, JUN, JUNB, JUND, ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, ATF6B and ATF7,

across 53 cell lines. The response variables for each cell line were then assembled as a series of seven signature scores, defined

as the average of z-scores for the expression levels of differentiation state signature genes (Tsoi et al., 2018). The PLSR model

was trained in python using the scikit-learn library and the PLSRegression() function. To evaluate the predictability of the linear rela-

tionship between the input and output variables using the same dataset, we used leave-one-out cross-validation by LeaveOneOut()

function. To independently validate themodel, we used RNA sequencing data from an independent panel of 32melanoma cell lines in

the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019). As with the training dataset, we first log2-transformed the CCLE gene

expression data (reported as RPKM) with an offset of 1.We then created input vectors by combining the z-scored expression data for

fifteen AP-1 transcription factor family genes and used them in the optimized PLSR model (using the first four PLS components)

trained against the original set of 53 cell lines to predict the differentiation signature scores in the new set of 32 cell lines.

The PLSR model performance was evaluated in terms of fraction of variance explained (R2) or predicted (Q2) using the explained_

variance_score() function. We assessed the relative importance of each AP-1 factor in the PLSR model based on the variable
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importance in projection (VIP) scores, computed for the first four PLS components, at which the PLSR model achieves its optimal

performance (Wold, 1994). To help interpret the directionality of the contribution, we multiplied the VIP score for each AP-1 factor

by the sign of Pearson correlation coefficient between its expression levels and differentiation signature z-scores.

We compared the performance (based on 10-fold cross validation) of optimized PLSR model, built based on the top eight AP-1

genes (FOS, FOSL1, FOSL2, JUN, JUNB, JUND, ATF2 and ATF4) with optimized models built using combinations of eight randomly

chosen basic leucine zipper (bZIP) transcription factors (Vinson et al., 2002) or eight randomly chosen transcription factors (Van de

Sande et al., 2020) (excluding those that were explicitly involved in the differentiation signature genes) by computing empirical p

values using 100,000 and 500,000 iterations, respectively.

To identify dynamic patterns of AP-1 changes that are associated with drug-induced changes in differentiation state, we con-

structed a PLSR model to relate DMSO-normalized changes in AP-1 proteins to DMSO-normalized changes in differentiation state.

The input vector consists of DMSO-normalized population measurements of the seventeen AP-1 proteins, including cFOS, p-cFOS,

FRA1, p-FRA1, FRA2, cJUN, p-cJUN, JUNB, JUND, p-ATF1, ATF2, p-ATF2, ATF3, ATF4, p-ATF4, ATF5 and ATF6, at 24 h and 72 h,

z-scored across two MAPK inhibitor treatment conditions and eighteen cell lines. DMSO-normalized AP-1 measurements were

calculated as the log ratios of drug-treated AP-1 levels relative to the DMSO control. The response vector is composed of the

DMSO-normalized changes in differentiation state, which is calculated as log
� ðNGFR=MITFÞDrug
ðNGFR=MITFÞDMSO

�
. Model training, cross-validation

and performance evaluation were performed the same way as in the gene-expression PLSR model. VIP scores were computed

for the first three PLS components.

Uniform manifold approximation and projection (UMAP)
UMAP was performed in R using the umap package (0.2.7.0). For single-cell protein data, we first performed principal component

analysis (PCA) using the prcomp() function on the z-scored log-transformed data and selected the PCA scores from the first four prin-

cipal component for UMAP analysis. The parameters used in generating the UMAP for single-cell protein data include nearest

neighbor (n_neighbors) = 90, minimum distance (min_dist) = 0.7 and distance metric (metric) = Euclidean.

Hierarchical clustering
Unsupervised hierarchical clustering of population-averaged AP-1 protein measurements was carried out in R using the stats (4.1.2)

package. Clustering was performed using the hclust() functionwith the average algorithm as the agglomerationmethod. The distance

matrix used for clustering was evaluated using the dist() function, with Pearson’s correlation as the distance metric.

Single-cell regulatory network inference and clustering (SCENIC)
For the SCENIC analysis of melanoma cell lines, the baseline regulon activities inferred by the SCENIC workflow (Aibar et al., 2017;

Van de Sande et al., 2020) were obtained from the .loom file published by Wouters et al. (Wouters et al., 2020). The.loom file was

imported to R for downstream analysis using the SCopeLoomR package (0.13.0).

Single-cell RNA sequencing data for patient-derived melanoma tumors were obtained from previous studies published by Tirosh

et al. (Tirosh et al., 2016) and Jerby-Arnon et al. (Jerby-Arnon et al., 2018). Single-cell gene expression analysis and SCENIC was

focused on 2072 malignant melanoma cells, which were distinguished (by the authors) from non-malignant cells based on gene

copy number variations. For quality control, we first selected 14,689 genes which were detected in more than 1% of the cells

(i.e., 20 cells) with at least 103 logged TPM counts, using the single-cell analysis toolkit Scanpy (1.7.1) (Wolf et al., 2018) in Python.

Using this dataset, we then inferred regulons using pySCENIC (0.11.0) in a Nextflow pipeline adapted from Wouters et al. (Wouters

et al., 2020), performing 100 SCENIC runs on the data. As inWouters et al.’s regulon filtering criteria, only regulons that hadmore than

10 target genes and recurred in at least 80/100 runs were retained. Target genes (used in AUCell calculation) that appear in at least

80% of the runs in regulons that recurred 100 times, and all target genes for regulons that recurred 80–100 times were retained. This

analysis pipeline resulted in 373 motif regulons.

Partial correlation analysis
Partial correlation analysis is used for the evaluation of correlations between pairs of variables while controlling for the variance ex-

plained by a third variable. We used pairwise partial correlation analysis to evaluate correlations between changes induced byMAPK

inhibitors in each of the AP-1 protein levels and p-ERK levels across different cell lines, while controlling for the baseline (drug-naı̈ve)

variance of AP-1 levels across the same cell lines. AP-1 and p-ERK data were averaged across two replicates and log-transformed.

To assess if any of the AP-1 factors would capture drug-specific changes in ERK signaling, we then used the Matlab function par-

tialcorr() to evaluate the Pearson’s partial correlation coefficients (and the associated p values) between p-ERK and AP-1 levels

across cell lines for each MAPK inhibitor treatment condition, while correcting for differences in their baseline (DMSO condition)

AP-1 levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell protein abundance was quantified from microscopy images using CellProfiler (3.1.9). No statistical method was used to

predetermine sample size. Sample sizes were chosen based on similar studies in the relevant literature. The experiments were not
e7 Cell Reports 40, 111147, August 2, 2022
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randomized. The investigators were not blinded to allocation during experiments and outcome assessment. All boxplots and violin

plots highlight the median, lower and upper quartiles. Whiskers in boxplots indicate 1.5 times interquartile ranges. Sample size (i.e.,

number of cells or replicates) are indicated in the figure legend. The significance of pairwise correlations were evaluated based on p

values associatedwith the corresponding two-sided Pearson’s correlation analysis. Statistical significance of changes in population-

averaged protein abundance across different drugs and/or timepoints were determined based on one-way or two-way analysis of

variance (ANOVA), as indicated in the figure legends. To identify the statistical significance of differences betweenmean of measure-

ments of two different groups, p values were determined using paired or unpaired two-sided t test, as indicated in the figure legends.

Statistical analyses were performed using MATLAB (2020b) and R (4.0.4).
Cell Reports 40, 111147, August 2, 2022 e8
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Figure S1. Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma cells. Related to Figure 1. (A) 
Single-cell distributions of seventeen AP-1 factors and four differentiation state markers measured across 19 cell lines and shown by 
violin plots highlighting the median and interquartile (25% and 75%) ranges. (B) Random Forest model cross-validation performance 
(using the top six AP-1 factors) to predict the differentiation state of new cells from independent cell lines not included in model 
training. At each iteration, one cell line was removed, a model was built using randomly sampled cells from the remaining 18 cell 
lines, and then the trained model was used to predict the differentiation state of randomly selected cells from the left-out cell line. Red 
dash line indicates accuracy from random prediction (25%). (C) Confusion matrix showing the cross-validation performance of the 
random forest classifier. Numbers shown are in terms of average percentage of cells in the indicated categories. (D)  Confusion 
matrices showing the model cross-validation performance for each independent cell line. 
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Figure S2. AP-1 protein, transcript levels and activities predict variations in differentiation state and phenotype across 
melanoma cell lines and single cells. Related to Figures 1-3. (A) Summary of contributions of 15 AP-1 factors in predicting each 
melanoma differentiation state based on analyses performed in this study on single-cell protein measurements and bulk gene 
expression data. Significant positive and negative predictors are highlighted. Significant AP-1 proteins were determined based on their 
SHAP importance in the random forest model. Significant AP-1 genes were determined based on the significance of their VIP scores 
(i.e., magnitude greater than 1) in the PLSR model. (B-F) Single-cell distributions of the activity of SCENIC regulons for FOSL2 (B), 
JUN (C), FOSL1 (D), and FOS (E) motifs, as well as the ratio of FOS and JUN regulon activities (F), measured using AUCell in 
individual cells (from 10 melanoma cell lines profiled by Wouters et al) across the two-class (“proliferative” versus “invasive”) 
melanoma phenotypes. The phenotype of individual cells was determined based on their gated levels of enrichment (quantified by 
AUCell) for the gene signatures as defined by Hoek et al. (G-K) Single-cell distributions of the AUCell activity of SCENIC regulons 
for FOSL2 (G), JUN (H), FOSL1 (I), and FOS (J) motifs, as well as the ratio of FOS and JUN regulon activities (K), quantified in 
individual cells from 12 treatment-naïve melanoma tumors as profiled by Tirosh et al and Jerby-Arnon et al. Statistical comparisons 
were performed using two-sided unpaired t test. Boxplot hinges correspond to the lower and upper quartiles, with a band at median. 
Whiskers indicate 1.5 times interquartile ranges. 
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Figure S3. AP-1 protein measurements (including FOS and JUN subfamily members), measured in 18 cell lines before and 
following treatment with MAPK inhibitors for 24 and 72 h. Related to Figures 4 and 5. Bar height indicates mean values between 
two replicates shown as black dots. P-values show the statistical significance of treatment condition effect on indicated protein levels 
based on one-way ANOVA test.  
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Figure S4. AP-1 protein measurements (including ATF subfamily members) and differentiation state markers MITF and 
NGFR, measured in 18 cell lines before and following treatment with MAPK inhibitors for 24 and 72 h. Related to Figures 4 
and 5. Bar height indicates mean values between two replicates shown as black dots. P-values show the statistical significance of 
treatment condition effect on indicated protein levels based on one-way ANOVA test.  
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Figure S5. Representative immunofluorescence images of AP-1 proteins, differentiation state markers and p-ERK levels 
following MAPK inhibitor treatment. Related to Figures 5, 6. (A) Immunofluorescence images of AP-1 proteins cFOS, p-cFOS, 
cJUN, p-cJUN, FRA1, p-FRA1 and differentiation state markers MITF and NGFR in COLO858 cells before and after treatment with 
indicated inhibitors at indicated doses and timepoints. Each experiment was repeated twice with similar result. Scale bars represent 
100 µm. (B) Immunofluorescence images of p-ERK in representative cell lines (LOXIMVI, COLO858 and SKMEL28) before and 
after treatment with indicated inhibitors at indicated doses and timepoints. Each experiment was repeated twice with similar result. 
Scale bars represent 100 µm.  
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Figure S6. Correlation analysis between drug-naïve (baseline) p-ERK and AP-1 protein levels across melanoma cell lines. 
Related to Figure 6. (A-B) Pearson’s correlations (evaluated across 19 drug-naïve cell lines) and associated P values between each of 
the 17 AP-1 measurements and p-ERK levels. Each data-point in (B) represents population-averaged measurements across all cells 
pooled from two replicates for each cell line.  
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Figure S7. Representative immunofluorescence images of AP-1 proteins, differentiation state markers following different AP-1 
knockdown conditions. Related to Figure 7. Immunofluorescence images (by 4i) of AP-1 proteins cFOS, FRA2, cJUN, JUND, and 
differentiation state markers MITF and SOX10 in COLO858 cells before and after treatment with indicated siRNA conditions for 96 
h. Each experiment was repeated three times with similar result. Scale bars represent 100 µm. 
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Table S1. The siRNA sequences used in this study. Related to Figure 7. 

Target Gene Dharmacon Cat# siRNA sequence 

Non-targeting control D-001810-10-05 UGGUUUACAUGUCGACUAA, 

UGGUUUACAUGUUGUGUGA, 

UGGUUUACAUGUUUUCUGA, 

UGGUUUACAUGUUUUCCUA 

FOS J-003265-09 GGGAUAGCCUCUCUUACUA 

J-003265-10 ACAGUUAUCUCCAGAAGAA 

J-003265-12 GCAAUGAGCCUUCCUCUGA 

FOSL1 J-004341-06 GAGCUGCAGUGGAUGGUAC 

J-004341-07 AAUCUGGGCUGCAGCGAGA 

J-004341-08 GAGUAAGGCGCGAGCGGAA 

FOSL2 J-004110-13 GGCCCAGUGUGCAAGAUUA 

cJUN J-003268-10 GAGCGGACCUUAUGGCUAC 

J-003268-12 GAAACGACCUUCUAUGACG 

JUND J-003900-12 GAAACACCCUUCUACGGCG 

J-003900-13 CCGACGAGCUCACAGUUCC 

J-003900-14 UCAAGAGUCAGAACACGGA 

J-003900-15 GUUCGAUUCUGCCCUAUUU 
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