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Patient-to-patient variability in drug response is a primary chal-
lenge facing development and use of new medicines1. A recent 
approach to understanding such variability involves genotyp-

ing coupled with systematic measurement of dose-response across 
a large and diverse bank (‘encyclopedia’) of cell lines2–8. In the case 
of anticancer drugs that block cell proliferation or induce apop-
tosis9, cells are typically exposed to drug over a 104- to 105-fold 
concentration range, and viability is measured after 72–96 h. Such 
data is conventionally analyzed from the perspective of IC50 values 
(or similar parameters), which are descriptive of the shape of the 
dose-response curve at its midpoint. However, inspection of dose-
response curves reveals that they differ substantially in shape from 
one drug to the next and from one cell line to the next. Variability 
in shape can be quantified by performing a multiparametric  
analysis using a conventional logistical sigmoidal function

where y is a response measure at dose D (typically the experi-
mental data), E0 and Einf are the top and bottom asymptotes of the 
response, EC50 is the concentration at half-maximal effect, and Hill 
slope (HS) is a slope parameter analogous to the Hill coefficient10–12  
(Fig. 1a). Three values derived from equation (1) are in common 
use: IC50, Emax and the area under the dose-response curve (AUC). 
Although they are not strictly parameters of equation (1), we refer 
to Emax, IC50 and AUC as ‘parameters’ for simplicity. EC50 and IC50 
are the classic measures of drug potency, and Emax and Einf are mea-
sures of drug efficacy (for anticancer drugs, Emax varies between 1  
at low doses and 0 at high doses, which corresponds to death of 
all of the cells). AUC combines potency and efficacy of a drug 
into a single parameter. AUC values can be compared for a single 
drug across multiple cell lines exposed to the same range of drug 
concentrations, but comparison of different drugs is problematic 
(because the scaling between drugs and dose ranges is generally 

(1)

arbitrary). In the simple case of second-order competitive inhibi-
tion, the case considered in most pharmacology textbooks, E0 = 1, 
Emax = Einf = 0, EC50 = IC50 and HS = 1 (Fig. 1a).

The focus to date on potency2–4,6–8,13 ignores the potential impact 
and biological importance of variation in other parameters, such 
as the steepness of the dose-response curve or differences in maxi-
mum effect (although one recent large-scale study did compute 
Emax and AUC5). In this paper, we show that different dose-response 
parameters encode distinct information; some parameters varied 
systematically with cell line and others with drug. For example, 
HS and Emax were frequently uncorrelated with each other or with 
half-maximum growth inhibition (GI50), but the parameters var-
ied in a consistent way within a drug class. Because the origins 
of systematic variation in HS and Emax are poorly understood, 
we performed single-cell analysis of Akt/PI3K/mTOR inhibitors 
and found that cell-to-cell variability is one explanation for shal-
low dose-response relationships. Thus, multiparametric analysis 
yields insight into understudied aspects of drug response that are 
particularly important near and above the IC50 value, a concentra-
tion range relevant to human patients.

RESULTS
Dose-response parameters vary with compound and cell line
We focused on analysis of previously published data compris-
ing CellTiter-Glo measurement of per-well ATP concentrations 
(a metric of metabolically active cells)14 for 64 anticancer drugs 
(Supplementary Results, Supplementary Table 1) and 53 well-
characterized breast cell lines3. Assays were performed before and 
3 d after exposure to drugs at nine doses spanning a ~105-fold range 
(with maximum doses between 0.5 μM and 20 mM depending  
on potency3). We computed viability as y = N/NC, where the cell 
number N was measured in the presence of drug, and cell  number 
NC is measured in a no-drug control. As the number of cells 
present before the start of the experiment was available (N0), we 
also computed y* = (N – N0)/(NC – N0) to yield the GI50 value for  
y* = 0.5 (Fig. 1b). We confirmed key findings using independent 
dose-response data released through the Cancer Cell Line Project 
(for which estimates of N0 are not available)4.
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Large-scale analysis of cellular response to anticancer drugs typically focuses on variation in potency (half-maximum inhibitory 
concentration, (IC50)), assuming that it is the most important difference between effective and ineffective drugs or sensitive 
and resistant cells. We took a multiparametric approach involving analysis of the slope of the dose-response curve, the area 
under the curve and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line 
and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs 
targeting the Akt/PI3K/mTOR pathway, dose-response curves were unusually shallow. Classical pharmacology has no ready 
explanation for this phenomenon, but single-cell analysis showed that it correlated with significant and heritable cell-to-cell  
variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the  
comparative analysis of drug response, particularly at clinically relevant concentrations near and above the IC50. 
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Multiparametric analysis yielded values for EC50, IC50, GI50, 
HS, Einf, Emax and AUC for 2,789 drug–cell line combinations 
(Supplementary Data Set 1; http://lincs.hms.harvard.edu/db/
datasets/20120/; data filtering described in Online Methods) 
and revealed substantial differences from one drug and cell line 
to the next (Fig. 1c). For example, across cell lines, IC50 varied 
~104-fold, and Emax varied from 0 to 0.8 for the microtubule sta-
bilizer docetaxel and HSP90 inhibitor geldanamycin (Fig. 2a,b), 
whereas IC50 varied little for the CDK4/cyclin D1 kinase inhibitor 

 fascaplysin (no more than tenfold), and the maximum effect was 
high in all cases (Emax ~0; Fig. 2c). In the case of the PI3K inhibitor 
GSK2126458, the HS was ~1.0, whereas it varied substantially for 
the polyamine analog CGC-11144 (Fig. 2d,e).

Association of maximal effect parameters with cell type
We observed that potency, maximal effect and slope were well 
correlated only for a subset of drugs and cell lines (Fig. 3a and 
Supplementary Fig. 1). For example, whereas IC50 and Emax 
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Figure 1 | Diversity of anticancer compounds with respect to variation in dose-response parameters across a panel of breast cell lines. (a) Schematic of 
key dose-response parameters (eC50, IC50, Einf, Emax and AUC) calculated following curve fitting to the cell survival data. The pink area represents the AUC. 
The red dashed line represents the simple case of E0 = 1, Emax = Einf = 0, eC50 = IC50 and HS = 1. effects of variations in eC50, slope (HS) and Einf on the shape 
of dose-response curve are shown on the right; details of parameters and logistic equation are described in the text. (b) Schematic of key dose-response 
parameters (GI50 and total growth inhibition (TGI)) that can be calculated by fitting logistic curves to data on relative cell growth comprising a change in 
cell number after drug treatment normalized to the change in cell number in an untreated control well. (c) The range of dose-response parameters,  
IC50 (a measure of potency), Emax (a measure of efficacy) and HS (a measure of curve steepness) estimated for all 64 compounds across all 53 of the 
breast cell lines are represented by box-and-whisker plots and median parameter values and interquartile ranges; bars extending to 1.5× the interquartile 
range are shown for each drug as a measure of variance. Parameter values for outlier cell lines are marked with asterisks. Compounds are sorted on the 
basis of the median IC50 value. Drug targets are nominal and do not include off-target effects.

Figure 2 | Selected examples of dose-response curves representing different types of variation in dose-response relationships. (a–e) Patterns of dose 
response across the breast cell line panel for docetaxel, a microtubule stabilizer (a); geldanamycin, an HSP90 inhibitor (b); fascaplysin, a CDK4 inhibitor (c); 
CGC-11144, a polyamine analog (d); and GSK2126458, a PI3K inhibitor (e), are shown. These drugs are highlighted in magenta in Figure 1c. The range of 
IC50 and Emax values is represented by box-and-whisker plots, and median parameter values and interquartile ranges are shown above and to the right;  
bars extending to 1.5× the interquartile range are shown for each drug as a measure of variance. Parameter values for outlier cell lines are denoted by stars.
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 correlated in the case of geldanamycin, they did not for the PI3K 
inhibitor GSK1059615 (Fig. 3b,c). IC50 and Emax were generally 
more highly correlated than GI50 and Emax (for example, for the 
Src/Abl inhibitor bosutinib: P = 10−11 versus P = 0.03; Fig. 3d–f). 
Thus, parameters we might assume to be interchangeable (for 
example, IC50 and GI50) were not, implying that different dose- 
response parameters convey different information. To quantify  
this, we computed the mutual information (MI)15 between param-
eter values and either cell or drug type. MI is an information 
theoretic metric that reveals how informative one variable (for 
example, IC50 or Emax) is about a second variable (for example, 
drug identity or cell type). For example, an MI score of 0 bits for a 
parameter-drug pair means that they are independent, whereas a 
score of 1 bit means pairs can be divided into 21 = 2 groups having 
either a low or a high parameter value; similarly, a score of 1.6 bits 
implies division into 21.6 ≈ 3 groups. We estimated the probabilities 
of observing different values of each dose-response parameter for 
all of the compounds and cell lines and used MI P values as a sta-
tistical measure of significance (this is necessary because nonzero 
MI values are expected by chance for randomly permuted data). 
We computed empirical P values by randomly shuffling the dose-
response data (n = 10,000) across all of the cell lines and drugs 
(further details are in Online Methods).

Parameters quantifying maximum effect (Emax and Einf) showed 
strong association (P < 10−4) with cell type. For example, all but 
three of the drugs had an equal or higher value for Emax in SKBR3 
cells than in SUM159PT cells (Fig. 4a). IC50 had a weaker associa-
tion (P = ~0.05) with cell type and EC50, and HS had no significant 
association (Supplementary Table 2). Prevailing ‘fractional kill’ 

theory16,17 posits that inhibitors of cell-cycle progression (such as 
paclitaxel) kill only the subset of cells that pass through S or M 
phases in the presence of drug. Consistent with this, SKBR3 had 
a substantially longer doubling time than SUM159PT cells (~50 h 
versus ~20 h and thus lower mitotic and S phase fractions) under 
the growth conditions used in this study. When we calculated the 
correlation between dose-response parameters and cell doubling 
time for all 64 drugs, we observed a strong positive correlation 
between Emax or IC50 and doubling time, particularly in the case of 
DNA-damaging agents and microtubule stabilizers (Fig. 4b and 
Supplementary Fig. 2). However, when we excluded nominally 
cell cycle–specific drugs from the analysis (Supplementary Fig. 2),  
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the association between cell line and both Emax and Einf was still 
statistically significant (P = ~0.02), albeit weaker. Moreover, 
drugs not classically considered to be inhibitors of cell cycle  
processes had Emax values that correlated with proliferation rate; in 
the case of bortezomib, the correlation might reflect the role of the 
proteasome in degradation of cyclins, p21 and p27 (refs. 18–20),  
but this is less obvious in the case of drugs such as the HSP90 
inhibitor geldanamycin. Also unexpected was the observation 
that Emax values for some cell-cycle inhibitors did not correlate 
with proliferation rate. For example, the CDK4 inhibitor fas-
caplysin, the CDC25 inhibitor NSC663284 and the DNA cross- 
linking agents cisplatin, carboplatin and oxaliplatin all had an 
Emax of ~0 in most cell lines, and any variation was independent 
of proliferation rate.

Association of Emax and hS with drug class
We observed a strong association (P < 10−4) between drug type and 
potency, efficacy and steepness of the dose-response relationships 
(Supplementary Table 2), meaning that virtually all of the drug 
pairs could be distinguished on the basis of cell line–dependent 
variation in one or more parameters. For example, the parameters 
IC50, Emax and HS allowed high-confidence (P = 10−9 to 10−6) dis-
crimination between the pairs of drugs (i) oxamflatin and vorinos-
tat (two HDAC inhibitors), (ii) MG-132 (a proteasome inhibitor) 
and 17-AAG (an HSP90 inhibitor), and (iii) GSK1059615 (a PI3K 
inhibitor) and trichostatin A (an HDAC inhibitor) (Fig. 4c–e). 
Distinguishability by IC50 is intuitively obvious and arises when the 

affinity of a drug for its target is greater than that of a second drug 
for its target, making the first compound universally more potent.

To better understand distinguishability by parameters other 
than potency, we grouped drugs into classes on the basis of nomi-
nal target or mechanism of action (ignoring potential secondary 
targets and polypharmacology). We subjected dose-response data 
for different drug classes to principal component analysis (PCA; 
Supplementary Fig. 3) to rotate the data into a new principal 
component space in which relationships between dose-response 
parameters and target could be visualized (independent of cell 
line). We found that drugs from the same class usually clustered 
together (Supplementary Fig. 3). For example, HDAC inhibitors, 
proteasome inhibitors and DNA cross-linking drugs had uniformly 
high maximal effects (Emax ~ Einf ~ 0), whereas inhibitors of EGFR 
and HSP90 had large variation in Emax (Fig. 4f). In the case of HS, 
mTOR inhibitors had  (with a median absolute deviation 
of 0.11), and for pyrimidine analog or thymidylate synthase inhibi-
tors,  (median absolute deviation = 0.15). These values 
were significantly less than one (P < 1 × 10−8), whereas values of 

 for HDAC and proteasome inhibitors were signifi-
cantly greater than one (P < 1 × 10−13). Cooperativity is the usual 
explanation for HS > 1 in classical enzymology and pharmacology, 
and the steep dose-response curve for proteasome inhibitors is 
presumed to reflect the presence of seven catalytic subunits in the 
active enzyme21. However, situations in which HS < 1 are less com-
monly considered, and neither sequential nor independent bind-
ing schemes with negative cooperativity result in HS < 1 (ref. 22).
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Figure 5 | high cell-to-cell variability is associated with shallow dose-response and suboptimal maximum effect for pharmacological inhibition of 
mTOR. (a) PI3K/Akt/mTor pathway and its associated downstream effectors. Highly simplified schematic showing how drug response was assessed  
by measuring amounts of phosphorylated Akt (p-Akt), S6 ribosomal protein, 4ebP1 and rb on the single-cell level by immunofluorescence microscopy.  
(b) Dose-dependent inhibition of p-4ebP1 in mCF10A cells with increasing drug concentrations, as illustrated by intensity values on a single-cell basis.  
(c) Selected immunofluorescence images of p-4ebP1, p-rb and Hoechst staining of mCF10A cells in the absence of drug and 24 h after exposure to 10 μm 
PP242. Scale bars represent 100 μm. (d) The effect of GSK1059615, PP242 and dactolisib on coefficient of variation (the s.d. for single-cell measurements 
divided by the population average) of single-cell amounts of p-4ebP1. Data represent mean values ± s.d. calculated from two replicates per dose of drug. 
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interquartile ranges and bars extending to 1.5× the interquartile range are shown. (f) retreating surviving mCF10A cells (exposure to 10 μm PP242 for 
72 h followed by fresh growth medium for 24 h) with nine doses of PP242 for 72 h results in a shallow dose-response curve with similar dose-response 
parameters as those observed for parental cells.
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We confirmed that HS varied with drug class using the Cancer 
Cell Line Project data set, which covers 639 human cell lines 
and 130 drugs4. The published data comprise concentration  
values at different fractional effect size (that is, EC25, EC50, EC75 and 
EC90), and we therefore approximated HS by the EC25/EC75 ratio 
(Supplementary Data Set 2). Among the 40 breast cancer lines 
in this data set, we found that EGFR inhibitors had significantly 
higher HS values than PI3K inhibitors (P = 9 × 10−6), and PI3K 
and AKT inhibitors had higher HS values than mTOR inhibitors  
(P = ~10−5–10−4), whereas HDAC and proteasome inhibitors 
had significantly higher HS values than all three classes of drugs  
(P = 10−3 to 10−8); this was also true when we examined all of the 
cell lines in the Cancer Cell Line Project data set (Supplementary 
Fig. 4). We conclude that HS varies in a consistent way with drug 
class across multiple data sets.

Cell-to-cell variability and shallow dose-response curves
To investigate how a shallow dose-response curve might arise, we 
focused on drugs inhibiting the PI3K/Akt/mTOR pathway that 
varied widely in HS and Emax values, independent of proliferation 
rate. As a class, these drugs are undergoing extensive clinical inves-
tigation23, with more than 300 trials at http://www.ClinicalTrials.
gov/. For three compounds with varying HS, we measured target 
inhibition by immunofluorescence microscopy and cell killing 
in four breast cell lines (HER2-amplified AU565 and HCC1954 
cancer cells, hormone receptor–positive T47D cancer cells and 
 nontransformed MCF10A cells). We probed the effects of the 
mTOR inhibitor PP242, the PI3K inhibitor GSK1059615 and 
the dual-specificity mTOR/PI3K inhibitor dactolisib (BEZ235) 
24 h after drug exposure in nine-point dose-response assays 
using antibodies specific for phospho-Akt (p-Akt; at Ser473), 
p-4EBP1 (at Thr37 and Thr46) and p-S6 (at Ser235 and Ser236) 
(Fig. 5a); p-4EBP1 in particular is generally considered to be the 
most informative downstream marker of Akt/mTOR/PI3K path-
way activity24,25. We also measured amounts of p-Rb (at Ser807 
and Ser811) as a surrogate for commitment to the cell cycle26. 
Immunofluorescence microscopy revealed dose-dependent inhi-
bition of p-Akt, p-4EBP1 and p-S6 (Supplementary Fig. 5), and 
viability assays performed 72 h after drug exposure confirmed 
that HS << 1 for PP242 and dactolisib and HS ~1 for GSK1059615 
in all of the cell lines (Supplementary Fig. 6). However, we 
also observed substantial cell-to-cell variability in phospho-
protein staining intensity for cells exposed to the first two drugs  
(Fig. 5b,c): the coefficient of variation in p-4EBP1 staining (that 
is, the s.d. of immunofluorescence signal intensity at the single-
cell level divided by the population average) rose for cells treated 
with PP242 or dactolisib near the IC50 but not for GSK1059615, 
which had a low and constant coefficient of variation (Fig. 5d). 
We observed similar results for other cell lines (Supplementary  
Figs. 7–9). We conclude that a shallow dose-response curve is  
correlated with high cell-to-cell variability in target inhibition com-
pared to drugs for which HS ~ 1 (in four of four cell lines tested).

Even at the highest drug concentrations tested (10 μM), a frac-
tion of cells exposed to PP242 but not GSK1059615 retained high 
p-4EBP1 staining (Fig. 5b,c). The outlier population in PP242-
treated cells with high p-4EBP1 staining had approximately ten-
fold higher p-Rb staining (P < 10−50) compared to the population 
with low p-4EBP1, implying that outliers were committed to cell 
proliferation (Fig. 5e). The presence of a subset of cells in which 
the Akt/mTOR/PI3K pathway is insensitive to inhibition by PP242 
or dactolisib is a likely explanation for fractional cell killing by 
these drugs (Emax > 0). To determine whether these insensitive cells 
represent a stable subpopulation or whether they interconvert  
with sensitive cells, we exposed cultures to two successive drug 
treatments. We treated MCF10A cells with PP242 for 72 h at a 
concentration (10 μM) sufficient to induce apoptosis or block  

proliferation in ~80% of cells. We exchanged the medium and 
allowed viable cells to recover for 24 h before being exposed a  
second time to PP242 at a range of nine doses (1 nM to 10 μM) for 
72 h. When we compared dose-response curves for the parental  
(drug-naive) and survivor cell populations (Fig. 5f), IC50 values  
(~1 μM) and HS < 1 were indistinguishable, showing that  
drug-sensitive cells can arise rapidly from relatively insensitive 
cells. Thus fractional response did not reflect the presence of a 
stable subpopulation of drug-insensitive cells but rather showed 
rapid interconversion between resistant and sensitive states.  
Cell-to-cell variability in response to PP242 and the shallow dose-
response curve it generates therefore seemed to be stable proper-
ties of cell populations.

Variation of cell line responsiveness to each drug class
The value of any single parameter as an effective descriptor of  
cellular response to a class of drugs should depend on how well the 
parameter correlates across cell lines. We computed a similarity  
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(bottom). (b) Predictive value of different dose-response parameters  
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score for drugs with related nominal targets and treated as sig-
nificant only those cases in which variation across cell lines was 
more highly correlated within a drug class than across drugs ran-
domly selected from multiple classes (as scored by P value; Online 
Methods and Supplementary Fig. 10). For example, in the case of 
the HDAC inhibitors vorinostat and LBH589, Emax values had a high 
similarity score as they varied in a consistent way (as illustrated 
by MDAMB134VI and T47D cells in Supplementary Fig. 10).  
For EGFR inhibitors, IC50 values were strongly correlated across 
cell lines (Pearson’s correlation coefficient = 0.90, P < 10−7 for erlo-
tinib and AG1478), but Emax was not correlated (Pearson’s correla-
tion coefficient ~0.4, P ~ 0.1). The reasons for these differences 
are not known, but we speculate that erlotinib and AG1478 exert 
their effects on the same target (EGFR) near their IC50 values but 
have additional and different targets at high drug concentrations 
where Emax values become relevant. When comparing drugs, we 
must therefore account for the fact that different parameters are 
informative for different drug classes.

An alternative way to approach this problem is to determine 
the ability of a single parameter to accurately describe a full dose-
response relationship. We computed the correlation between the 
response estimated from a single parameter of a conventional 
logistic curve and the measured response. In the case of the 
canonical dose response having Emax = 0, EC50 = IC50 and HS = 1, 
the correlation would be perfect across all drug concentrations. 
We performed the analysis across the range of doses for all of 
the drugs and cell lines by scoring the P values of the correlation 
coefficient. We observed that Emax was best correlated with actual 
response at high doses, IC50 and AUC were best at intermediate 
doses (near the median IC50 for all of the cell lines), and EC50 or 
GI50 were best at low doses (near the IC50 for the most sensitive cell 
line). These findings are depicted as continuous plots for 17-AAG, 
carboplatin and doxorubicin and for the full data set as a set of 
optimal parameters for each dose range (Fig. 6a,b). A priori, we 
are most interested in parameters that are informative at clini-
cally relevant concentration ranges. We can estimate these ranges 
from the plasma concentration (Cmax) at the maximal tolerated 
dose; in general, effective drugs are ones in which Cmax/IC50  1 
(Supplementary Table 3). Incorporating this information, we saw 
that, in the clinical range, the most informative parameter varied 
with drug (for example, AUC for 17-AAG, IC50 for carboplatin and 
Emax for doxorubicin).

DISCUSSION
To date, systematic analysis of large-scale dose-response data has 
concentrated on the closely related parameters EC50, IC50 and 
GI50, thereby making the implicit assumption that potency at the 
midpoint of the dose-response curve is the most important differ-
ence between drugs or between sensitive and resistant cells2–4,6–8,13.  
In this paper, we examined variation in features other than potency 
such as Emax, HS and AUC. For many drugs, IC50 (or GI50), Emax and 
HS did not correlate, and MI analysis revealed systematic varia-
tion with both drug and cell type: in the latter case, differences in 
cell proliferation rates emerged as a probable explanation, particu-
larly for variation in Emax and drugs that target cell cycle processes. 
This is consistent with extensive evidence that inhibitors of DNA 
synthesis or mitotic spindle assembly exert their effects (at least in 
culture) only when cells transit S or M phase. However, not all of 
the cell cycle inhibitors have Emax > 0. For example, inhibitors of 
CDK4 (fascaplysin), CDK phosphatase CDC25 (NSC663284) and 
the DNA cross-linking agents cisplatin, carboplatin and oxalipla-
tin had Emax ~ 0 for the vast majority of cell lines tested. Moreover, 
observed variation in Emax was independent of proliferation rate. 
Conversely, we observed a significant (MI P < 0.05) association 
between Emax and proliferation rate for drugs that are not typi-
cally considered to be cell cycle inhibitors, including the HSP90 

inhibitor geldanamycin and the proteasome inhibitor bortezomib 
(although the latter drug does affect degradation of cyclins and 
other cell cycle regulators). Further analysis of killing by cell cycle 
inhibitors whose effects do and do not correlate with prolifera-
tion is likely to be informative, particularly in the case of clinically 
important cytotoxic chemotherapeutics with similar targets.

For drugs that showed large variation in multiple, uncorre-
lated dose-response parameters, the question of which one is most 
informative arose. AUC, a parameter that combines potency and 
efficacy into a single measure, was robust as a response metric  
when the goal was to compare a single drug across cell lines exposed 
to identical dose ranges. Other parameters could be used with 
multiple drugs and concentration ranges, but their value varied  
with dose: Emax was more informative at high compared to low 
doses, and the opposite was true of IC50 and GI50. With anticancer 
drugs, it is typical to aim for a maximum serum dose (Cmax) near 
the maximum tolerated dose, and drugs for which Cmax/IC50   
1 are preferred clinically. During development of a new drug, 
reducing IC50 is obviously an important goal, but when the aim is 
to understand variability in patient responses to an existing drug, 
our data suggest that it is likely to be more informative to focus on 
Emax and HS.

In many cases, the origins of variation in dose-response param-
eters remain to be determined. Association with drug class or tar-
get is confounded by polypharmacology, which almost certainly 
affects the shape of dose-response curves at high drug concentra-
tions (particularly with phenotypic measures of response). Future 
analysis of different compounds having the same nominal target 
should help resolve this issue. Differences in the physicochemistry 
of drug-target interaction (for example, association rate, polar sur-
face area and so on) are potential sources of variation in param-
eters other than IC50, and it should be possible to tackle this with 
sophisticated cheminformatic analysis27,28. However, in this paper, 
we focused on understanding the origins of fractional maximum 
effect and shallow dose-response curves.

We found that the HS was particularly high for drugs such 
as proteasome and HDAC inhibitors (for example, bortezomib 
and LBH589), whereas inhibitors of the Akt/PI3K/mTOR path-
way had low and variable HS, particularly drugs such as PP242, 
temsirolimus, everolimus and rapamycin. Positive cooperativity 
provides a framework for understanding steep dose-response rela-
tionships (HS > 1)10,22, but even negative cooperativity should not 
result in HS < 1. By comparing the dose-dependent inhibition of 
proteins in the Akt/PI3K/mTOR pathway following exposure of 
cells to drugs with HS ~ 1 or HS < 1, we found that shallow dose 
response was associated with high cell-to-cell variability in tar-
get inhibition. Moreover, when we recovered and expanded cells 
that were initially insensitive to a drug such as PP242 and then 
reassayed drug response several days later, we observed the same 
shallow dose-response curve and fractional killing at high dose 
as in the original cell population. This implies that HS < 1 is a 
stable property of a cell population and that states of drug sensi-
tivity and insensitivity interconvert on the timescale of days. We 
and others have observed similar effects in receptor-mediated cell 
death29,30, activation of immune response31 or sensitivity to che-
motherapeutic drugs32 and ascribed them to stochastic fluctuation 
in the amounts or activities of intracellular signaling proteins. In 
principle, the molecules of a drug target present in any single cell 
could show a canonical HS = 1 dose-response curve, but fluctua-
tion in target amount, activity or interaction with other proteins33 
might cause the IC50 value to vary from cell to cell, giving rise to a 
shallow dose-response curve at the population level.

It is notable that mTOR inhibitors had some of the lowest  
values for HS and that this pathway is also subject to complex feed-
back regulation. Moreover, what seem to be static differences from 
one cell to the next in the fixed-time point experiments in this 
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paper are likely to arise from temporal fluctuations that are asyn-
chronous across the population. Mutations and nongenetic factors 
that generate dose-response curves with HS < 1 and Emax > 0 are 
likely to be important clinically: the incremental therapeutic ben-
efit of getting closer and closer to the maximum tolerated dose will 
be less for a drug with a shallow rather than steep dose-response 
curve. Studies on dose-response relationships for antiviral drugs 
have also concluded that variation in HS is important for assessing 
drug sensitivity and resistance21,34. Attempts to identify new drugs 
or effective combination therapies might therefore focus on steep-
ening the dose-response relationship and increasing maximum 
effect, not just decreasing IC50. 
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version of the paper.
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ONLINE mEThODS
Dose-response curve fitting. We obtained dose-response curves for the 72-h 
effect of 64 drugs, including both targeted agents and cytotoxic therapeutics 
on the viability and growth of 53 breast cell lines using previously published 
data3 (http://lincs.hms.harvard.edu/db/datasets/20120/). Briefly, we fitted 
triplicate nine-dose (1:5 serial dilution) data to the logistical sigmoidal model  
(equation (1); constraints: E0 = 1 and 0 < HS < 4) using nonlinear least-squares 
regression performed in GraphPad Prism 6. We excluded ‘no response’ data 
defined as data that (i) showed higher statistical quality (based on extra- 
sum-of-squares F test) when fitted to a constant model (y = Einf) in comparison 
with the sigmoidal model or (ii) their sigmoidal fitted curve Hill slopes were <  
0.25, from the analysis. We also removed data fitted to the sigmoidal model 
with R2 < 0.70 from the analysis. Approximately 82% of the 64 × 53 possible 
combinations of drug-cell line data passed all of filtering requirements and 
were used in all of the analyses.

We estimated doubling times for cell lines from the ratio of cell numbers at 
72 h to 0 h for untreated cells. We estimated different dose-response param-
eters for each individual curve, including EC50, IC50, GI50, Hill slope (HS), Einf 
and Emax. In the case of IC50 and GI50, when the dose-response data were of high 
quality, but IC50 or GI50 values were not reached, we set the values to the largest 
concentration tested. Additionally, we calculated a parameter AUC represent-
ing the area under the relative viability curve, defined as the sum of measured 
responses (relative viability) at all tested concentrations of the drug. Hence, 
AUC = 9 corresponds to an inactive compound, whereas smaller AUC values 
correspond to higher drug activities in inhibiting cell proliferation and/or 
inducing cell death. When multiple replicates of data on a drug or cell line 
combination are available, we used medians of the dose-response parameters 
estimated across replicates for the statistical analysis.

Association of different dose-response parameters with anticancer drugs and 
breast cell lines. We assessed associations of each of the key dose-response 
parameters, log10 (EC50), log10 (IC50), Hill slope, Emax and Einf, with the set of  
n = 64 drugs (or n = 38 when excluding cell cycle inhibitors) and the set of  
m = 53 cell lines using mutual information15. A rationale for using mutual 
information is to capture differences not only in the median (or mean) but 
also in the variance of dose-response parameters across different cell lines and 
compounds. We discretized each of the dose-response parameters X into q 
equally spaced bins, where q = floor [log2 (no. of samples) + 1] = 12 (or q = 
11 when excluding cell cycle inhibitors)35. We defined matrix N for each indi-
vidual dose-response parameter so that Ni,j was the number of cell lines whose 
dose-response parameter values for the ith drug (1 ≤ i ≤ n) lay within the jth bin 
of Xd, the discretized form of X (1 ≤ j ≤ q). We computed the empirical mutual 
information between Xd and the drugs as

I X drugs P P P Pd i jj
q

i
n

i j i j( ; ) log[ /( )], ,= ×== ∑∑ 11

where

P N Ni j i j i jj
q

i
n

, , ,/( )= == ∑∑ 11

P Pi i jj
q= =∑ ,1

P Pj i ji
n= =∑ ,1 .

Similarly, we defined matrix M, where Mk,j was the number of drugs whose 
dose-response parameter values for the kth cell line (1 ≤ k ≤ m) belonged to 
the jth bin of Xd. The empirical mutual information between Xd and the cell 
lines was given by

I X cell lines P P P Pd k jj
q

k
m

k j k j( ; ) log[ /( )], ,= ′ ′ ′ × ′
== ∑∑ 11

where

′ = == ∑∑P M Mk j k j k jj
q

k
m

, , ,/( )11

′ = ′
=∑P Pk k jj

q
,1

′ = ′
=∑P Pj k jk

m
,1 .

(2)

(3)

Mutual information scores of zero correspond to independence of the dose-
response parameters from the tested drugs and cell lines, whereas larger values 
imply strong association, indicating that knowing a dose-response parameter 
value gives important information about drugs and cell lines to which the 
parameter is expected to belong. To evaluate the significance of the mutual 
information scores, we computed empirical mutual information P values by 
randomly shuffling (10,000 trials) the dose-response parameter values among 
all of the tested cell lines and drugs.

Statistical analysis of drug response profiles. We evaluated differences in values  
of a dose-response parameter between different drugs or different cell 
lines by using a nonparametric Wilcoxon signed rank test. We evaluated 
differences in dose-response parameters between different drug classes 
that might contain different numbers of drugs by using a nonparametric  
Mann-Whitney U-test. We corrected P values from the Mann-Whitney U-test 
and Pearson correlation analyses using the Benjamini-Hochberg method36  
for multiple independent comparisons and the Bonferroni-Holm correction37 
for other comparisons.

To measure the extent of similarity among drug-response profiles, we used 
pairwise Pearson correlation scores by considering for each drug its pattern 
of dose-response parameter values across the cell lines. We computed the 
similarity score for a selected group of N drugs (for example, drugs within a 
class defined on the basis of drug target or mechanism of action) as the average 
similarity between all possible pairs of drugs belonging to the selected group 
(average correlation) divided by the expected average similarity between all 
possible pairs of drugs in a randomly selected set of N drugs. To evaluate 
the significance of the similarity score for a selected group of N drugs (SS),  
we computed empirical P values by permutation test; for a number of  
n = 10,000 trials, we sampled a random set of N drugs from the whole set 
of 64 drugs and computed the similarity score for that set (SS*). For a given  
SS ≥ 0, we counted the number of times (r) that SS ≤ SS* across the n permuta-
tion trials. We then computed the empirical P value as (r + 1)/(n + 1).

Principal component analysis. Principal component analysis (PCA) is an effi-
cient way to simplify and present multidimensional data into fewer dimen-
sions38. For example, each drug in our analysis can be described by 53 IC50 
values, 53 HS values and 53 Emax values corresponding to the parameters for 
growth inhibition assays for 53 breast cell lines. Therefore, each drug can be 
represented by a vector pointing into 53 × 3 = 159 dimensional space that 
depicts its effect on the cell line panel. Because it is not possible to visualize 
159-dimensional graphs, we used PCA to recognize the 159-dimensional rela-
tionships into three primary dimensions (i.e., principal components) that can 
be plotted on a graph. These principal components are a linear combination 
of the original dimensions. We organized dose-response parameters into a 
matrix with 64 rows (corresponding to drugs) and 159 columns (correspond-
ing to dose-response parameters IC50, HS and Emax for all cell lines), took the 
logarithm of parameters, imputed missing values from the nearest-neighbor 
row (the closest row in Euclidean distance), normalized each parameter value 
via calculating the Z score for each parameter across the 64 drugs and per-
formed PCA. We can discuss the results of PCA in terms of component scores  
(the transformed variable values corresponding to a particular data point) and 
loadings (the weight by which each normalized original variable should be 
multiplied to get the component score).

Cell lines and reagents. We obtained AU565, HCC1954 and T47D breast 
cancer cell lines and MCF10A mammary epithelial cells from the American 
Type Culture Collection (ATCC). We cultured AU565 and HCC1954 cells 
in RPMI 1640 (ATCC) supplemented with 10% FBS (FBS), T47D cells in 
RPMI 1640 supplemented with 10% FBS and insulin (0.2 U/ml) and MCF10A 
cells in DMEM/F12 (Invitrogen) supplemented with 5% horse serum, EGF  
(20 ng/ml), insulin (10 μg/ml), hydrocortisone (0.5 μg/ml) and cholera toxin 
(100 ng/ml). We added penicillin (50 U/ml) and streptomycin (50 μg/ml) to 
all growth medium.

We purchased dactolisib (BEZ235), GSK1059615 and PP242 from Selleck 
Chemicals. All of the compounds were at least 97% pure, as evaluated by HPLC 
and MS analysis. All of the compounds were dissolved in DMSO as 10-mM 
stock solutions. For dose-response experiments, we plated cells in two repli-
cates at 7,000 cells per well in 96-well plates (Corning) in full growth medium 
for 24 h and then treated them with nine doses in serial dilutions (10−10 to  
10−5 M) of each compound for 6 h, 24 h and 72 h.
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Immunofluorescence microscopy. Cells were fixed in 2% paraformaldehyde 
for 10 min at room temperature and washed with PBS with 0.1% Tween 20 
(Sigma-Aldrich) (PBS-T), permeabilized in methanol for 10 min at room 
temperature, rewashed with PBS-T and blocked in Odyssey Blocking Buffer 
(LI-COR Biosciences) for 1 h at room temperature. Cells were incubated 
overnight at 4 °C with rabbit monoclonal antibodies to p-Akt (1:400, Ser473, 
4060, Cell Signaling Technology), p-4EBP1 (1:400, Thr37/Thr46, 2855, Cell 
Signaling Technology), p-S6 ribosomal protein (1:400, Ser235/Ser236, 4858, 
Cell Signaling Technology), and a goat polyclonal antibody to p-Rb (1:400, 
Ser807/Ser811, sc-16670, Santa Cruz) in Odyssey Blocking Buffer. Cells were 
washed three times in PBS-T and incubated with rabbit and goat secondary 
antibodies labeled with Alexa Fluor 647 and Alexa Fluor 568 (Invitrogen), 
respectively, diluted 1:2,000 in Odyssey Blocking Buffer. Cells were washed 
once in PBS-T, once in PBS and then were incubated in 250 ng/ml Hoechst 
33342 (Invitrogen) and 1:1,000 Whole Cell Stain (blue; Thermo Scientific) 
solutions. Cells were then washed twice with PBS and imaged with a 10× objec-
tive on Operreta (PerkinElmer). Image segmentation and storage was per-
formed using ImageRail software39. Data were analyzed using MatLab software. 
Selected images were RGB transformed and merged using ImageJ software.

Online databases. Dose-response data (both raw and processed), including 
estimates of all dose-response parameters used in this study are available online 
through the Harvard Medical School Library of Integrated Network-based 
Cellular Signatures (HMS LINCS) database (http://lincs.hms.harvard.edu/db/
datasets/20120).
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